All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 145443 by 7770 last updated on 04/Jul/21
Therootsoftheequation2x2+px+q=0are2α+βandα+2β.Findthevaluesofpandq
Answered by Olaf_Thorendsen last updated on 05/Jul/21
S=x1+x2=(2α+β)+(α+2β)=3(α+β)P=x1x2=(2α+β)(α+2β)=2α2+5αβ+2β2S=−ba=−p2=3(α+β)⇒p=−6(α+β)P=ca=q2=2α2+5αβ+2β2⇒q=4α2+10αβ+4β2
Answered by Rasheed.Sindhi last updated on 05/Jul/21
2x2+px+q=0;2α+β&α+2βareroots.−2(2α+β)2+p(2α+β)+q....(i)2(α+2β)2+p(α+2β)+q....(ii)(i)−(ii):2{(2α+β)2−(α+2β)2}+p{(2α+β)−(α+2β)}=0−6α2+6β2−p(α−β)=0p=−6α2+6β2α−β)=−6(α2−β2)α−β=−6(α+β)p=−6(α+β)(i)⇒q=−2(2α+β)2−p(2α+β)=−2(2α+β)2−{−6(α+β)}(2α+β)=−8α2−8αβ−2β2+6(2α2+3αβ+β2)q=4α2+10αβ+4β2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com