Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 145548 by mathdanisur last updated on 05/Jul/21

if  3^x =24  and  2^y =36  find   (4^((x-1)∙y) /4^x ) = ?

if3x=24and2y=36find4(x1)y4x=?

Answered by Ar Brandon last updated on 06/Jul/21

(4^((x−1)y) /4^x )=(2^(2y(x−1)) /4^x )=((36^(2(x−1)) )/4^x )=(((4×9)^(2x−2) )/4^x )                 =4^(x−2) ×3^(4x−4) =(4^x /(16))×(3^(4x) /(81))=(4^x /(16))×((24^4 )/(81))                 =4^(log_3 24) ×2^8  =2^(2log_3 24+8)

4(x1)y4x=22y(x1)4x=362(x1)4x=(4×9)2x24x=4x2×34x4=4x16×34x81=4x16×24481=4log324×28=22log324+8

Answered by imjagoll last updated on 06/Jul/21

from 2^y = 36 & 3^x =24   ⇒(3^(x−1) )^y =( 2^3 )^y    ⇒3^(xy−y) =36^3  ⇒xy−y=log _3 (36)^3   ⇒4^(xy−y)  = 4^(log _3 (36)^3 )    ⇒4^x =4^(log _3 (24))   ⇒(4^(xy−y) /4^x ) = 4^(log _3 (((36^3 )/(24)))) =4^(log _3 (1944))   ⇒1944^(log _3 (4)) =(2^3 ×3^5 )^(log _3 (4))   = 2^(3.log _3 (4)) ×3^(5.log _3 (4))   = 4^5 ×2^(6.log _3 (2))  ≈14,121.233767

from2y=36&3x=24(3x1)y=(23)y3xyy=363xyy=log3(36)34xyy=4log3(36)34x=4log3(24)4xyy4x=4log3(36324)=4log3(1944)1944log3(4)=(23×35)log3(4)=23.log3(4)×35.log3(4)=45×26.log3(2)14,121.233767

Terms of Service

Privacy Policy

Contact: info@tinkutara.com