Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 145636 by mathmax by abdo last updated on 06/Jul/21

calculate ∫_0 ^∞  ((arctanx)/((1+x^2 )^2 ))dx

calculate0arctanx(1+x2)2dx

Answered by Dwaipayan Shikari last updated on 06/Jul/21

∫_0 ^∞ ((tan^(−1) (x))/((1+x^2 )^2 ))dx       x=tanθ  =∫_0 ^(π/2) (θ/(sec^4 θ))sec^2 θdθ  =∫_0 ^(π/2) θcos^2 θ dθ=(1/2)∫_0 ^(π/2) θ+θcos2θdθ  =(π^2 /(16))−(1/4)∫_0 ^(π/2) sin2θdθ=(π^2 /(16))−(1/4)

0tan1(x)(1+x2)2dxx=tanθ=0π2θsec4θsec2θdθ=0π2θcos2θdθ=120π2θ+θcos2θdθ=π216140π2sin2θdθ=π21614

Answered by mathmax by abdo last updated on 07/Jul/21

Ψ=∫_0 ^∞  ((arctanx)/((1+x^2 )^2 ))dx  cha7gement x=tant give  Ψ=∫_0 ^(π/2) (t/((1+tan^2 t)^2 ))(1+tan^2 t)dt =∫_0 ^(π/2) (t/(1+tan^2 t))dt  =∫_0 ^(π/2) tcos^2 t dt =∫_0 ^(π/2) t(((1+cos(2t))/2))dt=(1/2)∫_0 ^(π/2)  tdt +(1/2)∫_0 ^(π/2) tcos(2t)dt  ∫_0 ^(π/2)  tdt =[(t^2 /2)]_0 ^(π/2)  =(π^2 /8)  ∫_0 ^(π/2)  tcos(2t)dt =[(t/2)sin(2t)]_0 ^(π/2) −∫_0 ^(π/2) ((sin(2t))/2)dt  =[(1/4)cos(2t)]_0 ^(π/2)  =(1/4)(−2)=−(1/2) ⇒  Ψ=(π^2 /(16))−(1/4)

Ψ=0arctanx(1+x2)2dxcha7gementx=tantgiveΨ=0π2t(1+tan2t)2(1+tan2t)dt=0π2t1+tan2tdt=0π2tcos2tdt=0π2t(1+cos(2t)2)dt=120π2tdt+120π2tcos(2t)dt0π2tdt=[t22]0π2=π280π2tcos(2t)dt=[t2sin(2t)]0π20π2sin(2t)2dt=[14cos(2t)]0π2=14(2)=12Ψ=π21614

Terms of Service

Privacy Policy

Contact: info@tinkutara.com