Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 14564 by tawa tawa last updated on 02/Jun/17

What is the last 2 digits of      2^(613)

$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{last}\:\mathrm{2}\:\mathrm{digits}\:\mathrm{of}\:\:\:\:\:\:\mathrm{2}^{\mathrm{613}} \\ $$

Commented by tawa tawa last updated on 02/Jun/17

God bless you sir.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Commented by tawa tawa last updated on 02/Jun/17

But the question is last two digit

$$\mathrm{But}\:\mathrm{the}\:\mathrm{question}\:\mathrm{is}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digit} \\ $$

Commented by Tinkutara last updated on 02/Jun/17

2 ≡ 2 (mod 100)  2^2  ≡ 4 (mod 100)  2^4  ≡ 16 (mod 100)  2^8  ≡ −44 (mod 100)  2^(16)  ≡ 36 (mod 100)  2^(32)  ≡ −4 (mod 100)  2^(64)  ≡ 16 (mod 100)  2^(128)  ≡ −44 (mod 100)  2^(256)  ≡ 36 (mod 100)  2^(512)  ≡ −4 (mod 100)  2^(613)  = 2^(512 + 64 + 32 + 4 + 1)   = (−4)(16)(−4)(16)(2) = 8192  ≡ 92 (mod 100)  Hence last two digits are 92.

$$\mathrm{2}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{2}} \:\equiv\:\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{4}} \:\equiv\:\mathrm{16}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{8}} \:\equiv\:−\mathrm{44}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{16}} \:\equiv\:\mathrm{36}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{32}} \:\equiv\:−\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{64}} \:\equiv\:\mathrm{16}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{128}} \:\equiv\:−\mathrm{44}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{256}} \:\equiv\:\mathrm{36}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{512}} \:\equiv\:−\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{2}^{\mathrm{613}} \:=\:\mathrm{2}^{\mathrm{512}\:+\:\mathrm{64}\:+\:\mathrm{32}\:+\:\mathrm{4}\:+\:\mathrm{1}} \\ $$$$=\:\left(−\mathrm{4}\right)\left(\mathrm{16}\right)\left(−\mathrm{4}\right)\left(\mathrm{16}\right)\left(\mathrm{2}\right)\:=\:\mathrm{8192} \\ $$$$\equiv\:\mathrm{92}\:\left(\mathrm{mod}\:\mathrm{100}\right) \\ $$$$\mathrm{Hence}\:\mathrm{last}\:\mathrm{two}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{92}. \\ $$

Commented by Tinkutara last updated on 02/Jun/17

2 ≡ 2 (mod 1000)  2^2  ≡ 4 (mod 1000)  2^4  ≡ 16 (mod 1000)  2^8  ≡ 256 (mod 1000)  2^(16)  ≡ −464 (mod 1000)  2^(32)  ≡ 296 (mod 1000)  2^(64)  ≡ −384 (mod 1000)  2^(128)  ≡ 456 (mod 1000)  2^(256)  ≡ −64 (mod 1000)  2^(512)  ≡ 96 (mod 1000)  2^(613)  = 2^(512 + 64 + 32 + 4 + 1)   = (96)(−384)(296)(16)(2)  ≡ −808 (mod 1000)  ≡ 192 (mod 1000)  Last 3 digits are 192.

$$\mathrm{2}\:\equiv\:\mathrm{2}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{2}} \:\equiv\:\mathrm{4}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{4}} \:\equiv\:\mathrm{16}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{8}} \:\equiv\:\mathrm{256}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{16}} \:\equiv\:−\mathrm{464}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{32}} \:\equiv\:\mathrm{296}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{64}} \:\equiv\:−\mathrm{384}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{128}} \:\equiv\:\mathrm{456}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{256}} \:\equiv\:−\mathrm{64}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{512}} \:\equiv\:\mathrm{96}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{2}^{\mathrm{613}} \:=\:\mathrm{2}^{\mathrm{512}\:+\:\mathrm{64}\:+\:\mathrm{32}\:+\:\mathrm{4}\:+\:\mathrm{1}} \\ $$$$=\:\left(\mathrm{96}\right)\left(−\mathrm{384}\right)\left(\mathrm{296}\right)\left(\mathrm{16}\right)\left(\mathrm{2}\right) \\ $$$$\equiv\:−\mathrm{808}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\equiv\:\mathrm{192}\:\left(\mathrm{mod}\:\mathrm{1000}\right) \\ $$$$\mathrm{Last}\:\mathrm{3}\:\mathrm{digits}\:\mathrm{are}\:\mathrm{192}. \\ $$

Commented by tawa tawa last updated on 02/Jun/17

i really appreciate sir.

$$\mathrm{i}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{sir}. \\ $$

Commented by mrW1 last updated on 02/Jun/17

good working!  pls find the last 3 digits.

$${good}\:{working}! \\ $$$${pls}\:{find}\:{the}\:{last}\:\mathrm{3}\:{digits}. \\ $$

Commented by Tinkutara last updated on 02/Jun/17

I do not know how to find last 3 digits.  Maybe in that case, mod 1000 is  required. It will be very lengthy and  calculative (use of calculators).

$$\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{know}\:\mathrm{how}\:\mathrm{to}\:\mathrm{find}\:\mathrm{last}\:\mathrm{3}\:\mathrm{digits}. \\ $$$$\mathrm{Maybe}\:\mathrm{in}\:\mathrm{that}\:\mathrm{case},\:\mathrm{mod}\:\mathrm{1000}\:\mathrm{is} \\ $$$$\mathrm{required}.\:\mathrm{It}\:\mathrm{will}\:\mathrm{be}\:\mathrm{very}\:\mathrm{lengthy}\:\mathrm{and} \\ $$$$\mathrm{calculative}\:\left(\mathrm{use}\:\mathrm{of}\:\mathrm{calculators}\right). \\ $$

Commented by RasheedSoomro last updated on 02/Jun/17

e^x cellent!

$$\mathrm{e}^{\mathrm{x}} \mathrm{cellent}! \\ $$

Commented by mrW1 last updated on 02/Jun/17

very good!  please try to solve  Q13724

$${very}\:{good}! \\ $$$${please}\:{try}\:{to}\:{solve} \\ $$$${Q}\mathrm{13724} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com