All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 145888 by bramlexs22 last updated on 09/Jul/21
Answered by liberty last updated on 09/Jul/21
f(x)=x3+ax2+bx+c;a,b,c∈Rf′(x)=3x2+2ax+bf″(x)=6x+2a⇒g(x)=x3+(a+3)x2+(6+2a+b)x+2a+b+cwhereg′(x)=0forx=−3∧x=6g′(x)=3x2+2(a+3)x+(6+2a+b)=0⇒x1+x2=3=−2(a+3)3⇒−92−3=a;a=−152⇒x1.x2=−18=6+2a+b3⇒−54=6−15+b,b=−45g(x)=x3−92x2−54x−60+c...⇒y=1∧y=f(x)g(x)+6⇒f(x)=g(x)+6⇒x3−152x2−45x+c=x3−92x2−54x+c−54⇒3x2−9x−54=0⇒x2−3x−18=0⇒(x−6)(x+3)=0;x=−3∧x=6area=∫6−3(f(x)g(x)+6−1)dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com