Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 146026 by ajfour last updated on 10/Jul/21

Commented by ajfour last updated on 10/Jul/21

lets assume no friction..so  slides.

$${lets}\:{assume}\:{no}\:{friction}..{so} \\ $$$${slides}. \\ $$

Commented by ajfour last updated on 10/Jul/21

A parabolic wedge rests on a  frictionless ground. Now a  cylinder of an equal mass is  released onto the wedge-top.  Find maximum compression  of the spring (by the time the  cylinder loses contact with  the curved surface the first  time).

$${A}\:{parabolic}\:{wedge}\:{rests}\:{on}\:{a} \\ $$$${frictionless}\:{ground}.\:{Now}\:{a} \\ $$$${cylinder}\:{of}\:{an}\:{equal}\:{mass}\:{is} \\ $$$${released}\:{onto}\:{the}\:{wedge}-{top}. \\ $$$${Find}\:{maximum}\:{compression} \\ $$$${of}\:{the}\:{spring}\:\left({by}\:{the}\:{time}\:{the}\right. \\ $$$${cylinder}\:{loses}\:{contact}\:{with} \\ $$$${the}\:{curved}\:{surface}\:{the}\:{first} \\ $$$$\left.{time}\right). \\ $$

Commented by mr W last updated on 10/Jul/21

cylinder rolls or slides along the   wedge?

$${cylinder}\:{rolls}\:{or}\:{slides}\:{along}\:{the}\: \\ $$$${wedge}? \\ $$

Answered by mr W last updated on 10/Jul/21

Commented by mr W last updated on 11/Jul/21

at time t  displacement of wedge is s  P(p,kp^2 ) with k=1  tan θ=2kp  U=(ds/dt)  u=(dp/dt)  x_C =s+p−r sin θ=s+p−((2rkp)/( (√(1+(2kp)^2 ))))  y_C =kp^2 +r cos θ=kp^2 +(r/( (√(1+(2kp)^2 ))))  v_x =U+[1−((2rk)/( (√(1+(2kp)^2 ))))+((8rk^3 p^2 )/((1+(2kp)^2 )^(3/2) ))]u  v_y =2kp[1−((2rk)/((1+(2kp)^2 )^(3/2) ))]u  .....

$${at}\:{time}\:{t} \\ $$$${displacement}\:{of}\:{wedge}\:{is}\:{s} \\ $$$${P}\left({p},{kp}^{\mathrm{2}} \right)\:{with}\:{k}=\mathrm{1} \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{kp} \\ $$$${U}=\frac{{ds}}{{dt}} \\ $$$${u}=\frac{{dp}}{{dt}} \\ $$$${x}_{{C}} ={s}+{p}−{r}\:\mathrm{sin}\:\theta={s}+{p}−\frac{\mathrm{2}{rkp}}{\:\sqrt{\mathrm{1}+\left(\mathrm{2}{kp}\right)^{\mathrm{2}} }} \\ $$$${y}_{{C}} ={kp}^{\mathrm{2}} +{r}\:\mathrm{cos}\:\theta={kp}^{\mathrm{2}} +\frac{{r}}{\:\sqrt{\mathrm{1}+\left(\mathrm{2}{kp}\right)^{\mathrm{2}} }} \\ $$$${v}_{{x}} ={U}+\left[\mathrm{1}−\frac{\mathrm{2}{rk}}{\:\sqrt{\mathrm{1}+\left(\mathrm{2}{kp}\right)^{\mathrm{2}} }}+\frac{\mathrm{8}{rk}^{\mathrm{3}} {p}^{\mathrm{2}} }{\left(\mathrm{1}+\left(\mathrm{2}{kp}\right)^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right]{u} \\ $$$${v}_{{y}} =\mathrm{2}{kp}\left[\mathrm{1}−\frac{\mathrm{2}{rk}}{\left(\mathrm{1}+\left(\mathrm{2}{kp}\right)^{\mathrm{2}} \right)^{\frac{\mathrm{3}}{\mathrm{2}}} }\right]{u} \\ $$$$..... \\ $$

Answered by ajfour last updated on 10/Jul/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com