Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 146043 by liberty last updated on 10/Jul/21

Answered by iloveisrael last updated on 10/Jul/21

(2) lim_(x→0)  ((e^(sin x) −1−sin x)/((tan^(−1) (sin x))^2 ))   let tan^(−1) (sin x) = u →sin x=tan u    lim_(u→0)  ((e^(tan u) −1−tan u)/u^2 ) =   lim_(u→0)  ((sec^2 u e^(tan u) −sec^2 u)/(2u)) =   lim_(u→0)  ((sec^2 u)/2). lim_(u→0) ((e^(tan u) −1)/u) =   (1/2).lim_(u→0)  ((sec^2 u e^(tan u) )/1) = (1/2)×1=(1/2)

(2)limx0esinx1sinx(tan1(sinx))2lettan1(sinx)=usinx=tanulimu0etanu1tanuu2=limu0sec2uetanusec2u2u=limu0sec2u2.limu0etanu1u=12.limu0sec2uetanu1=12×1=12

Answered by iloveisrael last updated on 10/Jul/21

(1) lim_(x→((3π)/4))  ((1+((tan x))^(1/3) )/(1−2cos^2 x))      = lim_(x→((3π)/4))  ((1+tan x)/(1−2cos^2 x)) .lim_(x→((3π)/4))   (1/(1+((tan^2 x))^(1/3) −((tan x))^(1/3) ))   = (1/3)×lim_(x→((3π)/4))  ((cos x+sin x)/(cos x(−cos 2x)))  =−(1/3)×lim_(x→((3π)/4))  (1/(cos x(cos x−sin x)))  = −(1/3)×(1/(−(1/( (√2)))(−(1/( (√2)))−(1/( (√2))))))  =(1/3)×(1/((1/( (√2))).(2/( (√2)))))=(1/3)

(1)limx3π41+tanx312cos2x=limx3π41+tanx12cos2x.limx3π411+tan2x3tanx3=13×limx3π4cosx+sinxcosx(cos2x)=13×limx3π41cosx(cosxsinx)=13×112(1212)=13×112.22=13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com