Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 146057 by mnjuly1970 last updated on 10/Jul/21

Answered by mathmax by abdo last updated on 10/Jul/21

J=Im(∫_0 ^∞  x^(−(1/2))  e^(−x+ix) dx)  we have  ∫_0 ^∞  x^(−(1/2))  e^((−1+i)x)  dx =_((1−i)x=t)   ∫_0 ^∞ ((t/(1−i)))^(−(1/2))  e^(−t) (dt/(1−i))  =(1/((1−i)^(1/2) ))∫_0 ^∞  t^(−(1/2)) e^(−t)  dt =(1/(((√2)e^(−((iπ)/4)) )^(1/2) ))∫_0 ^∞ e^((1/2)−1)  e^(−t)  dt  =Γ((1/2)).(1/((^4 (√2))))e^((iπ)/8)  =((√π)/((^4 (√2)))){cos((π/8))+isin((π/8))} ⇒  J=((√π)/((^4 (√2))))sin((π/8)) ⇒λ=((√π)/((^4 (√2))))

$$\mathrm{J}=\mathrm{Im}\left(\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{x}+\mathrm{ix}} \mathrm{dx}\right)\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\mathrm{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{\left(−\mathrm{1}+\mathrm{i}\right)\mathrm{x}} \:\mathrm{dx}\:=_{\left(\mathrm{1}−\mathrm{i}\right)\mathrm{x}=\mathrm{t}} \:\:\int_{\mathrm{0}} ^{\infty} \left(\frac{\mathrm{t}}{\mathrm{1}−\mathrm{i}}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} \:\mathrm{e}^{−\mathrm{t}} \frac{\mathrm{dt}}{\mathrm{1}−\mathrm{i}} \\ $$$$=\frac{\mathrm{1}}{\left(\mathrm{1}−\mathrm{i}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\int_{\mathrm{0}} ^{\infty} \:\mathrm{t}^{−\frac{\mathrm{1}}{\mathrm{2}}} \mathrm{e}^{−\mathrm{t}} \:\mathrm{dt}\:=\frac{\mathrm{1}}{\left(\sqrt{\mathrm{2}}\mathrm{e}^{−\frac{\mathrm{i}\pi}{\mathrm{4}}} \right)^{\frac{\mathrm{1}}{\mathrm{2}}} }\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{1}} \:\mathrm{e}^{−\mathrm{t}} \:\mathrm{dt} \\ $$$$=\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right).\frac{\mathrm{1}}{\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)}\mathrm{e}^{\frac{\mathrm{i}\pi}{\mathrm{8}}} \:=\frac{\sqrt{\pi}}{\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)}\left\{\mathrm{cos}\left(\frac{\pi}{\mathrm{8}}\right)+\mathrm{isin}\left(\frac{\pi}{\mathrm{8}}\right)\right\}\:\Rightarrow \\ $$$$\mathrm{J}=\frac{\sqrt{\pi}}{\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)}\mathrm{sin}\left(\frac{\pi}{\mathrm{8}}\right)\:\Rightarrow\lambda=\frac{\sqrt{\pi}}{\left(^{\mathrm{4}} \sqrt{\mathrm{2}}\right)} \\ $$

Commented by SANOGO last updated on 30/Aug/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com