Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146110 by puissant last updated on 11/Jul/21

∫((x+1)/(2x^2 +x+1))dx

$$\int\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$

Answered by gsk2684 last updated on 11/Jul/21

∫(((1/4)(4x+1)−(1/4)+1)/(2x^2 +x+1))dx  (1/4)log ∣2x^2 +x+1∣+(3/4)∫(1/(2(x^2 +(1/2)x+(1/2))))dx  (1/4)log ∣2x^2 +x+1∣+(3/4)∫(1/(2((x+(1/4))^2 −(1/(16))+(1/2))))dx  (1/4)log ∣2x^2 +x+1∣+(3/8)∫(1/((x+(1/4))^2 +(((√7)/4))^2 ))dx  (1/4)log ∣2x^2 +x+1∣+(3/8)(1/((((√7)/4))))tan^(−1) (((x+(1/4))/((√7)/4)))+c  (1/4)log ∣2x^2 +x+1∣+(3/(2(√7)))tan^(−1) (((4x+1)/( (√7)))) +c

$$\int\frac{\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{4}{x}+\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\:\mid\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{4}}\int\frac{\mathrm{1}}{\mathrm{2}\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\:\mid\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{4}}\int\frac{\mathrm{1}}{\mathrm{2}\left(\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\:\mid\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{8}}\int\frac{\mathrm{1}}{\left({x}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\right)^{\mathrm{2}} }{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\:\mid\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{8}}\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\right)}\mathrm{tan}^{−\mathrm{1}} \left(\frac{{x}+\frac{\mathrm{1}}{\mathrm{4}}}{\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}}\right)+{c} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\:\mid\mathrm{2}{x}^{\mathrm{2}} +{x}+\mathrm{1}\mid+\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{7}}}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{4}{x}+\mathrm{1}}{\:\sqrt{\mathrm{7}}}\right)\:+{c} \\ $$

Commented by puissant last updated on 11/Jul/21

Sir there is an error in the first line.

$$\mathrm{Sir}\:\mathrm{there}\:\mathrm{is}\:\mathrm{an}\:\mathrm{error}\:\mathrm{in}\:\mathrm{the}\:\mathrm{first}\:\mathrm{line}. \\ $$

Commented by gsk2684 last updated on 11/Jul/21

corrected

$${corrected} \\ $$

Commented by puissant last updated on 11/Jul/21

Sir that there is + instead of −

$$\mathrm{Sir}\:\mathrm{that}\:\mathrm{there}\:\mathrm{is}\:+\:\mathrm{instead}\:\mathrm{of}\:−\: \\ $$

Commented by gsk2684 last updated on 11/Jul/21

silly mistakes but mistake

$${silly}\:{mistakes}\:{but}\:{mistake} \\ $$

Commented by puissant last updated on 11/Jul/21

okey sir

$$\mathrm{okey}\:\mathrm{sir} \\ $$

Answered by mathmax by abdo last updated on 11/Jul/21

I=∫ ((x+1)/(2x^2 +x+1))dx ⇒I=(1/4)∫ ((4x+1+3)/(2x^(2 ) +x+1))dx  =(1/4)log(2x^2  +x+1)+(3/8)∫ (dx/(x^(2 ) +(x/2)+(1/2)))  we have  ∫ (dx/(x^2  +(x/2)+(1/2)))=∫ (dx/(x^2  +2(1/4)x +(1/(16))+(1/2)−(1/(16))))=∫  (dx/((x+(1/4))^2 +(7/(16))))  =_(x+(1/4)=((√7)/4)t)   ((16)/7) ∫  (1/(t^2  +1))((√7)/4)dt =(4/( (√7))) arctan(t)+k  =(4/( (√7)))arctan(((4x+1)/( (√7))))+K ⇒  I=(1/4)log(2x^2  +x+1)+(3/(2(√7))) arctan(((4x+1)/( (√7))))+K

$$\mathrm{I}=\int\:\frac{\mathrm{x}+\mathrm{1}}{\mathrm{2x}^{\mathrm{2}} +\mathrm{x}+\mathrm{1}}\mathrm{dx}\:\Rightarrow\mathrm{I}=\frac{\mathrm{1}}{\mathrm{4}}\int\:\frac{\mathrm{4x}+\mathrm{1}+\mathrm{3}}{\mathrm{2x}^{\mathrm{2}\:} +\mathrm{x}+\mathrm{1}}\mathrm{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)+\frac{\mathrm{3}}{\mathrm{8}}\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}\:} +\frac{\mathrm{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\frac{\mathrm{x}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}}=\int\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{2}\frac{\mathrm{1}}{\mathrm{4}}\mathrm{x}\:+\frac{\mathrm{1}}{\mathrm{16}}+\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{16}}}=\int\:\:\frac{\mathrm{dx}}{\left(\mathrm{x}+\frac{\mathrm{1}}{\mathrm{4}}\right)^{\mathrm{2}} +\frac{\mathrm{7}}{\mathrm{16}}} \\ $$$$=_{\mathrm{x}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\mathrm{t}} \:\:\frac{\mathrm{16}}{\mathrm{7}}\:\int\:\:\frac{\mathrm{1}}{\mathrm{t}^{\mathrm{2}} \:+\mathrm{1}}\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}\mathrm{dt}\:=\frac{\mathrm{4}}{\:\sqrt{\mathrm{7}}}\:\mathrm{arctan}\left(\mathrm{t}\right)+\mathrm{k} \\ $$$$=\frac{\mathrm{4}}{\:\sqrt{\mathrm{7}}}\mathrm{arctan}\left(\frac{\mathrm{4x}+\mathrm{1}}{\:\sqrt{\mathrm{7}}}\right)+\mathrm{K}\:\Rightarrow \\ $$$$\mathrm{I}=\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}\left(\mathrm{2x}^{\mathrm{2}} \:+\mathrm{x}+\mathrm{1}\right)+\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{7}}}\:\mathrm{arctan}\left(\frac{\mathrm{4x}+\mathrm{1}}{\:\sqrt{\mathrm{7}}}\right)+\mathrm{K} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com