Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146147 by iloveisrael last updated on 11/Jul/21

 Υ = ∫ (dx/(x^4  (√(x^2 −a^2 )))) =?

Υ=dxx4x2a2=?

Answered by EDWIN88 last updated on 11/Jul/21

 Solve ∫ (dx/(x^4  (√(x^2 −a^2 ))))    Υ=∫ (dx/(x^2 .x^3 (√(1−a^2 x^(−2) ))))   let u=1−a^2 x^(−2)  →(du/(2a^2 ))=(dx/x^3 )  and (a^2 /x^2 )=1−u⇒(1/x^2 )=((1−u)/a^2 )  Υ=∫ (((1−u)du)/(2a^4 .(√u))) =(1/(2a^4 ))∫ (u^(−1/2) −u^(1/2) )du  Υ=(1/(2a^4 ))(2(√u)−(2/3)u(√u))+c   Υ=((√u)/a^4 )(1−(1/3)u)+c   Υ=((√(a^2 −x^2 ))/(a^4 x))(1−((x^2 −a^2 )/x^2 ))+c  Υ=((√(a^2 −x^2 ))/(a^2 x^3 )) + c

Solvedxx4x2a2Υ=dxx2.x31a2x2letu=1a2x2du2a2=dxx3anda2x2=1u1x2=1ua2Υ=(1u)du2a4.u=12a4(u1/2u1/2)duΥ=12a4(2u23uu)+cΥ=ua4(113u)+cΥ=a2x2a4x(1x2a2x2)+cΥ=a2x2a2x3+c

Answered by mathmax by abdo last updated on 11/Jul/21

Υ=_(x=(a/(sint)))    ∫  ((sin^4 t)/(a^4 (√((a^2 /(sin^2 t))−a^2 ))))(−((acost)/(sin^2 t)))dt  =(1/a^4 )∫  ((sin^2 t .cost)/(cost))sint dt =(1/a^4 )∫ sin^3 t dt  sin^3 t =sint(((1−cos(2t))/2))=(1/2)(sint−sint cos(2t))  sint cos(2t)=cos((π/2)−t)cos(2t)=(1/2){cos((π/2)+t)+cos((π/2)−3t))  =(1/2){−sint+sin(3t)} ⇒sin^3 t=(1/2)sint−(1/4){−sint+sin(3t)}  =(3/4)sint−(1/4)sin(3t) ⇒Υ=(1/a^4 )∫ ((3/4)sint−(1/4)sin(3t))dt  =−(3/(4a^4 ))cost +(1/(12a^4 ))cos(3t) +K  sint=(a/x) ⇒cost =(√(1−(a^2 /x^2 )))  cos(3t)=cost .cos2t−sint sin(2t)  =cost(2cos^2 t−1)−2sin^2 t cost  =(√(1−(a^2 /x^2 )))(2(1−(a^2 /x^2 ))−1)−2(a^2 /x^2 )(√(1−(a^2 /x^2 ))) ⇒  Ψ=−(3/(4a^4 ))(√(1−(a^2 /x^2 )))+(1/(12a^4 ))(√(1−(a^2 /x^2 )))(1−((4a^2 )/x^2 )) +K

Υ=x=asintsin4ta4a2sin2ta2(acostsin2t)dt=1a4sin2t.costcostsintdt=1a4sin3tdtsin3t=sint(1cos(2t)2)=12(sintsintcos(2t))sintcos(2t)=cos(π2t)cos(2t)=12{cos(π2+t)+cos(π23t))=12{sint+sin(3t)}sin3t=12sint14{sint+sin(3t)}=34sint14sin(3t)Υ=1a4(34sint14sin(3t))dt=34a4cost+112a4cos(3t)+Ksint=axcost=1a2x2cos(3t)=cost.cos2tsintsin(2t)=cost(2cos2t1)2sin2tcost=1a2x2(2(1a2x2)1)2a2x21a2x2Ψ=34a41a2x2+112a41a2x2(14a2x2)+K

Terms of Service

Privacy Policy

Contact: info@tinkutara.com