All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 146147 by iloveisrael last updated on 11/Jul/21
Υ=∫dxx4x2−a2=?
Answered by EDWIN88 last updated on 11/Jul/21
Solve∫dxx4x2−a2Υ=∫dxx2.x31−a2x−2letu=1−a2x−2→du2a2=dxx3anda2x2=1−u⇒1x2=1−ua2Υ=∫(1−u)du2a4.u=12a4∫(u−1/2−u1/2)duΥ=12a4(2u−23uu)+cΥ=ua4(1−13u)+cΥ=a2−x2a4x(1−x2−a2x2)+cΥ=a2−x2a2x3+c
Answered by mathmax by abdo last updated on 11/Jul/21
Υ=x=asint∫sin4ta4a2sin2t−a2(−acostsin2t)dt=1a4∫sin2t.costcostsintdt=1a4∫sin3tdtsin3t=sint(1−cos(2t)2)=12(sint−sintcos(2t))sintcos(2t)=cos(π2−t)cos(2t)=12{cos(π2+t)+cos(π2−3t))=12{−sint+sin(3t)}⇒sin3t=12sint−14{−sint+sin(3t)}=34sint−14sin(3t)⇒Υ=1a4∫(34sint−14sin(3t))dt=−34a4cost+112a4cos(3t)+Ksint=ax⇒cost=1−a2x2cos(3t)=cost.cos2t−sintsin(2t)=cost(2cos2t−1)−2sin2tcost=1−a2x2(2(1−a2x2)−1)−2a2x21−a2x2⇒Ψ=−34a41−a2x2+112a41−a2x2(1−4a2x2)+K
Terms of Service
Privacy Policy
Contact: info@tinkutara.com