Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 146157 by henderson last updated on 11/Jul/21

Answered by gsk2684 last updated on 11/Jul/21

∫_(1/e) ^λ (1/2)(1−ln x)((d(1−ln x))/(−1))  −(1/2)[(((1−ln x)^2 )/2)]_(1/e) ^λ   −(1/4)[(1−ln λ)^2 −(1−ln (1/e))^2 ]  −(1/4)[(1−ln λ)^2 −4]

$$\underset{\frac{\mathrm{1}}{{e}}} {\overset{\lambda} {\int}}\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\mathrm{ln}\:{x}\right)\frac{{d}\left(\mathrm{1}−\mathrm{ln}\:{x}\right)}{−\mathrm{1}} \\ $$$$−\frac{\mathrm{1}}{\mathrm{2}}\left[\frac{\left(\mathrm{1}−\mathrm{ln}\:{x}\right)^{\mathrm{2}} }{\mathrm{2}}\right]_{\frac{\mathrm{1}}{{e}}} ^{\lambda} \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}}\left[\left(\mathrm{1}−\mathrm{ln}\:\lambda\right)^{\mathrm{2}} −\left(\mathrm{1}−\mathrm{ln}\:\frac{\mathrm{1}}{{e}}\right)^{\mathrm{2}} \right] \\ $$$$−\frac{\mathrm{1}}{\mathrm{4}}\left[\left(\mathrm{1}−\mathrm{ln}\:\lambda\right)^{\mathrm{2}} −\mathrm{4}\right] \\ $$

Answered by hknkrc46 last updated on 11/Jul/21

♣ ∫_(1/e) ^( 𝛌)  ((1 − ln x)/(2x)) dx = ∫_(1/e) ^( 𝛌)  ((1/(2x)) − ((ln x)/(2x)))dx  = ∫_(1/e) ^( 𝛌)  (dx/(2x)) − (1/2)∫_(1/e) ^( 𝛌)  ((ln x)/x) dx   = (1/2)∫_(1/e) ^( 𝛌)  (dx/x) − (1/2)∫_(1/e) ^( 𝛌)  ln x ∙ ((d(ln x))/dx) dx  = (((ln x)/2))_(1/e) ^𝛌 −(((ln^2 x)/4))_(1/e) ^𝛌  = ((−ln^2 𝛌 + 2ln 𝛌 + 3)/4)

$$\clubsuit\:\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\frac{\mathrm{1}\:−\:\mathrm{ln}\:\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{x}}}\:\boldsymbol{{dx}}\:=\:\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\left(\frac{\mathrm{1}}{\mathrm{2}\boldsymbol{{x}}}\:−\:\frac{\mathrm{ln}\:\boldsymbol{{x}}}{\mathrm{2}\boldsymbol{{x}}}\right)\boldsymbol{{dx}} \\ $$$$=\:\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\frac{\boldsymbol{{dx}}}{\mathrm{2}\boldsymbol{{x}}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\frac{\mathrm{ln}\:\boldsymbol{{x}}}{\boldsymbol{{x}}}\:\boldsymbol{{dx}}\: \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\frac{\boldsymbol{{dx}}}{\boldsymbol{{x}}}\:−\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\:\boldsymbol{\lambda}} \:\mathrm{ln}\:\boldsymbol{{x}}\:\centerdot\:\frac{\boldsymbol{{d}}\left(\mathrm{ln}\:\boldsymbol{{x}}\right)}{\boldsymbol{{dx}}}\:\boldsymbol{{dx}} \\ $$$$=\:\left(\frac{\mathrm{ln}\:\boldsymbol{{x}}}{\mathrm{2}}\right)_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\boldsymbol{\lambda}} −\left(\frac{\mathrm{ln}\:^{\mathrm{2}} \boldsymbol{{x}}}{\mathrm{4}}\right)_{\frac{\mathrm{1}}{\boldsymbol{{e}}}} ^{\boldsymbol{\lambda}} \:=\:\frac{−\mathrm{ln}\:^{\mathrm{2}} \boldsymbol{\lambda}\:+\:\mathrm{2ln}\:\boldsymbol{\lambda}\:+\:\mathrm{3}}{\mathrm{4}} \\ $$

Answered by mathmax by abdo last updated on 11/Jul/21

A_λ =∫_(1/e) ^λ  ((1−logx)/(2x))dx changement logx=t give x=e^t  ⇒  A_λ =∫_(−1) ^(logλ)  ((1−t)/(2e^t ))e^t  dt =∫_(−1) ^(logλ) (1−t)dt=(1/2)[t−(t^2 /2)]_(−1) ^(logλ)   =(1/2)(logλ−((log^2 λ)/2) +1+(1/2))=(1/2)logλ−(1/4)log^2 λ+(3/4)

$$\mathrm{A}_{\lambda} =\int_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\lambda} \:\frac{\mathrm{1}−\mathrm{logx}}{\mathrm{2x}}\mathrm{dx}\:\mathrm{changement}\:\mathrm{logx}=\mathrm{t}\:\mathrm{give}\:\mathrm{x}=\mathrm{e}^{\mathrm{t}} \:\Rightarrow \\ $$$$\mathrm{A}_{\lambda} =\int_{−\mathrm{1}} ^{\mathrm{log}\lambda} \:\frac{\mathrm{1}−\mathrm{t}}{\mathrm{2e}^{\mathrm{t}} }\mathrm{e}^{\mathrm{t}} \:\mathrm{dt}\:=\int_{−\mathrm{1}} ^{\mathrm{log}\lambda} \left(\mathrm{1}−\mathrm{t}\right)\mathrm{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{t}−\frac{\mathrm{t}^{\mathrm{2}} }{\mathrm{2}}\right]_{−\mathrm{1}} ^{\mathrm{log}\lambda} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{log}\lambda−\frac{\mathrm{log}^{\mathrm{2}} \lambda}{\mathrm{2}}\:+\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{log}\lambda−\frac{\mathrm{1}}{\mathrm{4}}\mathrm{log}^{\mathrm{2}} \lambda+\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com