Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146181 by mnjuly1970 last updated on 11/Jul/21

          Σ_(n=0) ^∞ (1/(2^( n)  (n+1 ) ( n + 2 ))) =?

n=012n(n+1)(n+2)=?

Answered by Olaf_Thorendsen last updated on 11/Jul/21

S = Σ_(n=0) ^∞ (1/(2^n (n+1)(n+2)))  S = Σ_(n=0) ^∞ (1/2^n )((1/(n+1))−(1/(n+2)))  (1/(1−x)) = Σx^n , ∣x∣<1  −ln∣1−x∣ = Σ_(n=0) ^∞ (x^(n+1) /(n+1))  Σ_(n=0) ^∞ (1/2^n ).(1/(n+1)) = 2Σ_(n=0) ^∞ ((((1/2))^(n+1) )/(n+1)) = −2ln∣1−(1/2)∣ = 2ln2  Σ_(n=0) ^∞ (1/2^n ).(1/(n+2)) = 4Σ_(n=0) ^∞ ((((1/2))^(n+2) )/(n+2)) = 4Σ_(n=0) ^∞ ((((1/2))^(n+1) )/(n+1))−2 = −4ln∣1−(1/2)∣−2 = 4ln2−2  S = 2ln2−(4ln2−2) = 2−2ln2

S=n=012n(n+1)(n+2)S=n=012n(1n+11n+2)11x=Σxn,x∣<1ln1x=n=0xn+1n+1n=012n.1n+1=2n=0(12)n+1n+1=2ln112=2ln2n=012n.1n+2=4n=0(12)n+2n+2=4n=0(12)n+1n+12=4ln1122=4ln22S=2ln2(4ln22)=22ln2

Answered by Ar Brandon last updated on 11/Jul/21

S(x)=Σ_(n≥0) (x^(n+2) /((n+1)(n+2))) ⇒S′(x)=Σ_(n≥0) (x^(n+1) /(n+1))⇒S′′(x)=Σ_(n≥0) x^n =(1/(1−x))  ⇒S′(x)=Σ_(n≥0) ∫^x _0 x^n dx=∫_0 ^x (dx/(1−x))⇒S′(x)=Σ_(n≥0) (x^(n+1) /(n+1))=ln((1/(1−x)))  ⇒S(x)=Σ_(n≥0) ∫_0 ^x (x^(n+1) /(n+1))dx=∫_0 ^x ln((1/(1−x)))dx  ⇒S(x)=Σ_(n≥0) (x^(n+2) /((n+1)(n+2)))=[(1−x)ln(1−x)−(1−x)]_0 ^x   ⇒S(x)=(1−x)ln(1−x)−(1−x)+1=(1−x)ln(1−x)+x  Σ_(n≥0) (1/(2^n (n+1)(n+2)))=4S((1/2))=4((1/2)ln((1/2))+(1/2))=2−2ln2

S(x)=n0xn+2(n+1)(n+2)S(x)=n0xn+1n+1S(x)=n0xn=11xS(x)=n00xxndx=0xdx1xS(x)=n0xn+1n+1=ln(11x)S(x)=n00xxn+1n+1dx=0xln(11x)dxS(x)=n0xn+2(n+1)(n+2)=[(1x)ln(1x)(1x)]0xS(x)=(1x)ln(1x)(1x)+1=(1x)ln(1x)+xn012n(n+1)(n+2)=4S(12)=4(12ln(12)+12)=22ln2

Answered by qaz last updated on 11/Jul/21

Σ_(n=0) ^∞ (1/(2^n (n+1)(n+2)))  =Σ_(n=0) ^∞ (1/2^n )((1/(n+1))−(1/(n+2)))  =Σ_(n=0) ^∞ (1/2^n )∫_0 ^1 (x^n −x^(n+1) )dx  =∫_0 ^1 ((1−x)/(1−(x/2)))dx  =2∫_0 ^1 (1−(1/(2−x)))dx  =2(x+ln(2−x))∣_0 ^1   =2−2ln2

n=012n(n+1)(n+2)=n=012n(1n+11n+2)=n=012n01(xnxn+1)dx=011x1x2dx=201(112x)dx=2(x+ln(2x))01=22ln2

Answered by mathmax by abdo last updated on 11/Jul/21

S=Σ_(n=0) ^∞  (1/((n+1)(n+2)2^n ))  let f(x)=Σ_(n=0) ^∞  (x^n /((n+1)(n+2))) ⇒  ⇒f(x)=Σ_(n=0) ^∞ ((1/(n+1))−(1/(n+2)))x^n  =Σ_(n=0) ^∞  (x^n /(n+1))−Σ_(n=0) ^∞  (x^n /(n+2))  we have Σ_(n=0) ^∞  (x^n /(n+1))=Σ_(n=1) ^∞  (x^(n−1) /n)=(1/x)Σ_(n=1) ^∞  (x^n /n)=−(1/x)log(1−x)  Σ_(n=0) ^∞  (x^n /(n+2))=Σ_(n=2) ^∞  (x^(n−2) /n)=(1/x^2 )Σ_(n=2) ^∞ (x^n /n)=(1/x^2 )(−log(1−x)−x) ⇒  f(x)=−(1/x)log(1−x)+(1/x^2 )(x+log(1−x))  =(1/x)+((1/x^2 )−(1/x))log(1−x)  S=f((1/2))=2+(4−2)log((1/2))=2−2log(2)

S=n=01(n+1)(n+2)2nletf(x)=n=0xn(n+1)(n+2)f(x)=n=0(1n+11n+2)xn=n=0xnn+1n=0xnn+2wehaven=0xnn+1=n=1xn1n=1xn=1xnn=1xlog(1x)n=0xnn+2=n=2xn2n=1x2n=2xnn=1x2(log(1x)x)f(x)=1xlog(1x)+1x2(x+log(1x))=1x+(1x21x)log(1x)S=f(12)=2+(42)log(12)=22log(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com