Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 146253 by mathdanisur last updated on 12/Jul/21

(4x^4  - 2x^2  + 17)_(max)  = ?

(4x42x2+17)max=?

Answered by iloveisrael last updated on 12/Jul/21

f(x)_(min) = 4((1/4))^2 −2((1/4))+17  f(x)_(min)  = (1/4)−(2/4)+((68)/4)=((67)/4) , when x^2 =(1/4)  f(x)_(max) =∞

f(x)min=4(14)22(14)+17f(x)min=1424+684=674,whenx2=14f(x)max=

Commented by mathdanisur last updated on 12/Jul/21

thankyou Ser

thankyouSer

Answered by gsk2684 last updated on 12/Jul/21

4(x^4 −(1/2)x^2 )+17  4((x^2 −(1/4))^2 −(1/(16)))+17  4(x^2 −(1/4))^2 −(1/4)+17  4(x^2 −(1/4))^2 +((67)/4)  minimum is ((67)/4)  maximum can not define on R

4(x412x2)+174((x214)2116)+174(x214)214+174(x214)2+674minimumis674maximumcannotdefineonR

Commented by mathdanisur last updated on 12/Jul/21

thankyou Ser

thankyouSer

Terms of Service

Privacy Policy

Contact: info@tinkutara.com