Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146307 by mnjuly1970 last updated on 12/Jul/21

         S_n  =Σ_(k=1) ^n (( 1)/(k (k+2)k+4)))          lim_( n→∞)  (  S_( n)  ) = ?

Sn=nk=11k(k+2)k+4)limn(Sn)=?

Answered by mathmax by abdo last updated on 12/Jul/21

let decompose f(x)=(1/(x(x+2)(x+4)))  f(x)=(a/x)+(b/(x+2))+(c/(x+4))  a=(1/8),b=(1/((−2)(2)))=−(1/4),c=(1/((−4)(−2)))=(1/8) ⇒  f(x)=(1/(8x))−(1/(4(x+2)))+(1/(8(x+4)))  S_n =Σ_(k=1) ^n  f(k)=(1/8)Σ_(k=1) ^n  (1/k)−(1/4)Σ_(k=1) ^n  (1/(k+2)) +(1/8)Σ_(k=1) ^n  (1/(k+4))  Σ_(k=1) ^n  (1/k)=H_n   ,Σ_(k=1) ^n  (1/(k+2))=Σ_(k=3) ^(n+2)  (1/k)=H_(n+2) −(3/2)  Σ_(k=1) ^n  (1/(k+4))=Σ_(k=5) ^(n+4)  (1/k)=H_(n+4) −(3/2)−(1/3)−(1/4)=H_(n+4) −(3/2)−(7/(12))  =H_(n+4) −((25)/(12)) ⇒  S_n =(1/8)H_n −(1/4)(H_(n+2) −(3/2))+(1/8)(H_(n+4) −((25)/(12)))  =(1/8)(H_n +H_(n+4) )−(1/4)H_(n+2) +(3/8)−((25)/(96))  S_n ∼(1/8)(logn +γ +o((1/n))+log(n+4)+γ +o((1/(n+4))))  −(1/4)(log(n+2)+γ +o((1/(n+2)))) +(3/8)−((25)/(96))  S_n ∼log((((n^2  +4n)^(1/8) )/((n+2)^(1/4) )))  +(3/8)−((25)/(96))  we have   lim_(n→∞) (((n^2 +4n)^(1/8) )/((n+2)^(1/4) ))=1 ⇒lim_(n⌣∞) S_n =(3/8)−((25)/(96))=((36−25)/(96))=((11)/(96))

letdecomposef(x)=1x(x+2)(x+4)f(x)=ax+bx+2+cx+4a=18,b=1(2)(2)=14,c=1(4)(2)=18f(x)=18x14(x+2)+18(x+4)Sn=k=1nf(k)=18k=1n1k14k=1n1k+2+18k=1n1k+4k=1n1k=Hn,k=1n1k+2=k=3n+21k=Hn+232k=1n1k+4=k=5n+41k=Hn+4321314=Hn+432712=Hn+42512Sn=18Hn14(Hn+232)+18(Hn+42512)=18(Hn+Hn+4)14Hn+2+382596Sn18(logn+γ+o(1n)+log(n+4)+γ+o(1n+4))14(log(n+2)+γ+o(1n+2))+382596Snlog((n2+4n)18(n+2)14)+382596wehavelimn(n2+4n)18(n+2)14=1limnSn=382596=362596=1196

Commented by mnjuly1970 last updated on 12/Jul/21

   thx mr max...

thxmrmax...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com