All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 146307 by mnjuly1970 last updated on 12/Jul/21
Sn=∑nk=11k(k+2)k+4)limn→∞(Sn)=?
Answered by mathmax by abdo last updated on 12/Jul/21
letdecomposef(x)=1x(x+2)(x+4)f(x)=ax+bx+2+cx+4a=18,b=1(−2)(2)=−14,c=1(−4)(−2)=18⇒f(x)=18x−14(x+2)+18(x+4)Sn=∑k=1nf(k)=18∑k=1n1k−14∑k=1n1k+2+18∑k=1n1k+4∑k=1n1k=Hn,∑k=1n1k+2=∑k=3n+21k=Hn+2−32∑k=1n1k+4=∑k=5n+41k=Hn+4−32−13−14=Hn+4−32−712=Hn+4−2512⇒Sn=18Hn−14(Hn+2−32)+18(Hn+4−2512)=18(Hn+Hn+4)−14Hn+2+38−2596Sn∼18(logn+γ+o(1n)+log(n+4)+γ+o(1n+4))−14(log(n+2)+γ+o(1n+2))+38−2596Sn∼log((n2+4n)18(n+2)14)+38−2596wehavelimn→∞(n2+4n)18(n+2)14=1⇒limn⌣∞Sn=38−2596=36−2596=1196
Commented by mnjuly1970 last updated on 12/Jul/21
thxmrmax...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com