All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 14632 by Tinkutara last updated on 03/Jun/17
Findthegeneralsolutionoftheequation3sin2x+2cos2x+31−sin2x+2sin2x=28
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17
sin2x+2cos2x=m⇒1−sin2x+2sin2x==1−sin2x+2−2cos2x=3−m⇒3m+33−m=28⇒(3m=t)t2−28t+27=0⇒t=1,271)3m=1⇒sin2x+2cos2x−1=0⇒sin2x+cos2x=0⇒tg2x=0⇒x=kπ2(cos2x≠0⇒2x≠2lπ+π2⇒x≠lπ+π4)2)3m=27=33⇒m=3⇒sin2x+2cos2x=3⇒sin2x+cos2x=2⇒2sin(2x+π4)=2⇒sin(2x+π4)=2itisimpossible.
Commented by Tinkutara last updated on 04/Jun/17
ThanksSir!
Answered by 433 last updated on 03/Jun/17
3sin2x+2(1−sin2x)+31−sin2x+2sin2x=283sin2x−2sin2x+2+31−sin2x+2sin2x=283sin2x−2sin2x=y>0y×32+3y=289y2−28y+3=0Δ=282−4×9×3=676=262y1,2=28±2618=19or33sin2x−2sin2x=19sin2x−2sin2x=−22sinxcosx−2(1−cos2x)=−22sinxcosx+2cos2x=02cosx(sinx+cosx)=0cosx=0⇔x=2kπ±π2sinx=−cosx⇔−(sin−x)=−cosxsin(−x)=sin(π2−x)−x=2kπ+π2−x⇔2kπ+π/2=0−x=2kπ+x+π2⇔x=kπ−π43sin2x−2sin2x=3sin2x−2sin2x=12sinxcosx−2(1−cos2x)=12cosx(sinx+cosx)=3sin(2x+π4)=22(sin2x+cos2x)=22(2sinxcosx+cos2x−sin2x)sin(2x+π4)×2+1=2sinxcosx+cos2x−sin2x+1=2sinxcosx+2cos2x=2cosx(sinx+cosx)⇒sin(2x+π4)×2+1=3sin(2x+π4)=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com