Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 14632 by Tinkutara last updated on 03/Jun/17

Find the general solution of the  equation  3^(sin 2x + 2 cos^2  x)  + 3^(1 − sin 2x + 2 sin^2  x)  = 28

Findthegeneralsolutionoftheequation3sin2x+2cos2x+31sin2x+2sin2x=28

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 03/Jun/17

sin2x+2cos^2 x=m⇒1−sin2x+2sin^2 x=  =1−sin2x+2−2cos^2 x=3−m  ⇒3^m +3^(3−m) =28⇒(3^m =t)  t^2 −28t+27=0⇒t=1,27  1)3^m =1⇒sin2x+2cos^2 x−1=0⇒  sin2x+cos2x=0⇒tg2x=0⇒x=((kπ)/2)  (cos2x≠0⇒2x≠2lπ+(π/2)⇒x≠lπ+(π/4))  2)3^m =27=3^3 ⇒m=3  ⇒sin2x+2cos^2 x=3⇒sin2x+cos2x=2  ⇒(√2)sin(2x+(π/4))=2⇒sin(2x+(π/4))=(√2)  it is impossible.^

sin2x+2cos2x=m1sin2x+2sin2x==1sin2x+22cos2x=3m3m+33m=28(3m=t)t228t+27=0t=1,271)3m=1sin2x+2cos2x1=0sin2x+cos2x=0tg2x=0x=kπ2(cos2x02x2lπ+π2xlπ+π4)2)3m=27=33m=3sin2x+2cos2x=3sin2x+cos2x=22sin(2x+π4)=2sin(2x+π4)=2itisimpossible.

Commented by Tinkutara last updated on 04/Jun/17

Thanks Sir!

ThanksSir!

Answered by 433 last updated on 03/Jun/17

    3^(sin2x+2(1−sin^2 x)) +3^(1−sin2x+2sin^2 x) =28  3^(sin2x−2sin^2 x+2) +3^(1−sin2x+2sin^2 x) =28  3^(sin2x−2sin^2 x) =y>0  y×3^2 +(3/y)=28  9y^2 −28y+3=0  Δ=28^2 −4×9×3=676=26^2   y_(1,2) =((28±26)/(18))=(1/9) or 3  3^(sin2x−2sin^2 x) =(1/9)  sin2x−2sin^2 x=−2  2sinxcosx−2(1−cos^2 x)=−2  2sinxcosx+2cos^2 x=0  2cosx(sinx+cosx)=0  cosx=0 ⇔ x=2kπ±(π/2)  sinx=−cosx ⇔ −(sin−x)=−cosx  sin(−x)=sin((π/2)−x)  −x=2kπ+(π/2)−x ⇔2kπ+π/2=0   −x=2kπ+x+(π/2) ⇔ x=kπ−(π/4)  3^(sin2x−2sin^2 x) =3  sin2x−2sin^2 x=1  2sinxcosx−2(1−cos^2 x)=1  2cosx(sinx+cosx)=3  sin(2x+(π/4))=((√2)/2)(sin2x+cos2x)=  ((√2)/2)(2sinxcosx+cos^2 x−sin^2 x)  sin(2x+(π/4))×(√2)+1=2sinxcosx+cos^2 x−sin^2 x+1=  2sinxcosx+2cos^2 x=2cosx(sinx+cosx)  ⇒ sin(2x+(π/4))×(√2)+1=3  sin(2x+(π/4))=(√2)

3sin2x+2(1sin2x)+31sin2x+2sin2x=283sin2x2sin2x+2+31sin2x+2sin2x=283sin2x2sin2x=y>0y×32+3y=289y228y+3=0Δ=2824×9×3=676=262y1,2=28±2618=19or33sin2x2sin2x=19sin2x2sin2x=22sinxcosx2(1cos2x)=22sinxcosx+2cos2x=02cosx(sinx+cosx)=0cosx=0x=2kπ±π2sinx=cosx(sinx)=cosxsin(x)=sin(π2x)x=2kπ+π2x2kπ+π/2=0x=2kπ+x+π2x=kππ43sin2x2sin2x=3sin2x2sin2x=12sinxcosx2(1cos2x)=12cosx(sinx+cosx)=3sin(2x+π4)=22(sin2x+cos2x)=22(2sinxcosx+cos2xsin2x)sin(2x+π4)×2+1=2sinxcosx+cos2xsin2x+1=2sinxcosx+2cos2x=2cosx(sinx+cosx)sin(2x+π4)×2+1=3sin(2x+π4)=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com