Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146334 by tabata last updated on 12/Jul/21

Commented by tabata last updated on 12/Jul/21

help me sir questiin 1 and 3

helpmesirquestiin1and3

Answered by Olaf_Thorendsen last updated on 12/Jul/21

Q1.  Ω_1  = ∫_(∣z∣=3) (z^2 /((z−1)(z−2))) dz  Ω_1  = ∫_(∣z∣=3) (1−(1/(z−1))+(4/(z−2))) dz  Ω_1  = ∫_(∣z∣=3) (1−(1/(z−1))+(4/(z−2))) dz  Ω_1  = 0−2iπ+4×2iπ = 6iπ    Q3.  Ω_3  = ∫_(∣z−2∣=3) ((e^z +sinz)/z) dz  Res_0 f = e^0 +sin0 = 1  Ω_3  = 2iπRes_0 f = 2iπ

Q1.Ω1=z∣=3z2(z1)(z2)dzΩ1=z∣=3(11z1+4z2)dzΩ1=z∣=3(11z1+4z2)dzΩ1=02iπ+4×2iπ=6iπQ3.Ω3=z2∣=3ez+sinzzdzRes0f=e0+sin0=1Ω3=2iπRes0f=2iπ

Answered by mathmax by abdo last updated on 13/Jul/21

4) ∫_(∣z∣=(1/2))    ((cosz)/(z(z+i)^2 ))dz =2iπ Res(f,o)=−2iπ because  Res(f,0)=((cos0)/((0+i)^2 ))=−1

4)z∣=12coszz(z+i)2dz=2iπRes(f,o)=2iπbecauseRes(f,0)=cos0(0+i)2=1

Answered by mathmax by abdo last updated on 13/Jul/21

1) ∫_C (z^2 /((z−1)(z−2)))dz =2iπ{ Res(f,1) +Res(f,2)}  withf(z)=(z^2 /((z−1)(z−2))) ⇒Res(f,1)=(1^2 /((1−2)))=−1  Res(f,2)=(2^2 /((2−1)))=4 ⇒I=2iπ{−1+4} =6iπ

1)Cz2(z1)(z2)dz=2iπ{Res(f,1)+Res(f,2)}withf(z)=z2(z1)(z2)Res(f,1)=12(12)=1Res(f,2)=22(21)=4I=2iπ{1+4}=6iπ

Answered by mathmax by abdo last updated on 13/Jul/21

2) f(z)=(z/((z^2 −9)(z+i))) ⇒∫_(∣z∣=2)  ((zdz)/((9−z^2 )(z+i)))  =−∫_(∣z∣=2)    ((zdz)/((z−3)(z+3)(z+i)))=−2iπRes(f,−i)  =−2iπ.((−i)/((−1+9))) =((−2π)/8)=−(π/4)

2)f(z)=z(z29)(z+i)z∣=2zdz(9z2)(z+i)=z∣=2zdz(z3)(z+3)(z+i)=2iπRes(f,i)=2iπ.i(1+9)=2π8=π4

Commented by Mrsof last updated on 13/Jul/21

put sir :Res(f,−i)=((−i)/(10))

putsir:Res(f,i)=i10

Answered by mathmax by abdo last updated on 13/Jul/21

3)I=∫_(∣z−2∣=3)    f(z)dz =2iπRes(f,o)  Res(f,o)=lim_(z→0)   zf(z)=lim_(z→0)   e^z  +sinz =1 ⇒I=2iπ

3)I=z2∣=3f(z)dz=2iπRes(f,o)Res(f,o)=limz0zf(z)=limz0ez+sinz=1I=2iπ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com