Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146371 by lapache last updated on 13/Jul/21

∫_0 ^π (1/(1+cos^2 x))dx=......???

0π11+cos2xdx=......???

Answered by gsk2684 last updated on 13/Jul/21

let I=∫_0 ^Π (1/(1+cos^2 x)) dx   (1)  f(Π−x)=(1/(1+cos^2 (Π−x))) =(1/(1+cos^2 x))=f(x)  (1)⇒I=2∫_0 ^(Π/2) (1/(1+cos^2 x))dx  ⇒I=2∫_0 ^(Π/2) (1/(sec^2 x+1)) sec^2 x dx  ⇒I=2∫_0 ^(Π/2) (1/(1+tan^2 x+1)) sec^2 x dx  ⇒I=2∫_0 ^(Π/2) (1/(tan^2 x+((√2))^2 )) d(tan x)  ⇒I=2[(1/( (√2)))tan^(−1) (((tan x)/( (√2))))]_0 ^(Π/2)   ⇒I=(√2)[(Π/2)−0]=(Π/( (√2)))

letI=Π011+cos2xdx(1)f(Πx)=11+cos2(Πx)=11+cos2x=f(x)(1)I=2Π2011+cos2xdxI=2Π201sec2x+1sec2xdxI=2Π2011+tan2x+1sec2xdxI=2Π201tan2x+(2)2d(tanx)I=2[12tan1(tanx2)]0Π2I=2[Π20]=Π2

Answered by Ar Brandon last updated on 13/Jul/21

I=∫_0 ^π (dx/(1+cos^2 x))=2∫_0 ^(π/2) ((sec^2 x)/(sec^2 x+1))dx    =2∫_0 ^(π/2) ((d(tanx))/(2+tan^2 x))=(2/( (√2)))[arctan(((tanx)/( (√2))))]_0 ^(π/2) =(π/( (√2)))

I=0πdx1+cos2x=20π2sec2xsec2x+1dx=20π2d(tanx)2+tan2x=22[arctan(tanx2)]0π2=π2

Answered by mathmax by abdo last updated on 13/Jul/21

Ψ=∫_0 ^π  (dx/(1+cos^2 x)) ⇒Ψ=∫_0 ^π  (dx/(1+((1+cos(2x))/2)))=∫_0 ^π  ((2dx)/(3+cos(2x)))  =_(2x=t)   ∫_0 ^(2π)  (dt/(3+cost))=_(e^(it)  =z)   ∫_(∣z∣=1)    (dz/(iz(3+((z+z^(−1) )/2))))  =∫  ((−2idz)/(z(6+z+z^(−1) )))=∫_(∣z∣=1)   ((−2idz)/(z^2  +6z +1))=∫_(∣z∣=1)   ϕ(z)dz  Δ^′  =9−1=8 ⇒z_1 =−3+2(√2) and z_2 =−3−2(√2)  ∣z_1 ∣−1=3−2(√2)−1 =2−2(√2)<0 ⇒∣z_1 ∣<1  ∣z_2 ∣−1=3+2(√2)−1=2+2(√2)>0 ⇒∣z_2 ∣>1 residus theoem ⇒  ∫_(∣z∣=1)   ϕ(z)dz=2iπ Res(ϕ,z_1 )  ϕ(z)=((−2i)/((z−z_1 )(z−z_2 ))) ⇒Res(ϕ,z_1 )=((−2i)/(z_1 −z_2 ))=((−2i)/(4(√2)))=((−i)/(2(√2))) ⇒  ∫_(∣z∣=1)   ϕ(z)dz=2iπ×((−i)/(2(√2))) =(π/( (√2))) ⇒Ψ=(π/( (√2)))

Ψ=0πdx1+cos2xΨ=0πdx1+1+cos(2x)2=0π2dx3+cos(2x)=2x=t02πdt3+cost=eit=zz∣=1dziz(3+z+z12)=2idzz(6+z+z1)=z∣=12idzz2+6z+1=z∣=1φ(z)dzΔ=91=8z1=3+22andz2=322z11=3221=222<0⇒∣z1∣<1z21=3+221=2+22>0⇒∣z2∣>1residustheoemz∣=1φ(z)dz=2iπRes(φ,z1)φ(z)=2i(zz1)(zz2)Res(φ,z1)=2iz1z2=2i42=i22z∣=1φ(z)dz=2iπ×i22=π2Ψ=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com