All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146371 by lapache last updated on 13/Jul/21
∫0π11+cos2xdx=......???
Answered by gsk2684 last updated on 13/Jul/21
letI=∫Π011+cos2xdx(1)f(Π−x)=11+cos2(Π−x)=11+cos2x=f(x)(1)⇒I=2∫Π2011+cos2xdx⇒I=2∫Π201sec2x+1sec2xdx⇒I=2∫Π2011+tan2x+1sec2xdx⇒I=2∫Π201tan2x+(2)2d(tanx)⇒I=2[12tan−1(tanx2)]0Π2⇒I=2[Π2−0]=Π2
Answered by Ar Brandon last updated on 13/Jul/21
I=∫0πdx1+cos2x=2∫0π2sec2xsec2x+1dx=2∫0π2d(tanx)2+tan2x=22[arctan(tanx2)]0π2=π2
Answered by mathmax by abdo last updated on 13/Jul/21
Ψ=∫0πdx1+cos2x⇒Ψ=∫0πdx1+1+cos(2x)2=∫0π2dx3+cos(2x)=2x=t∫02πdt3+cost=eit=z∫∣z∣=1dziz(3+z+z−12)=∫−2idzz(6+z+z−1)=∫∣z∣=1−2idzz2+6z+1=∫∣z∣=1φ(z)dzΔ′=9−1=8⇒z1=−3+22andz2=−3−22∣z1∣−1=3−22−1=2−22<0⇒∣z1∣<1∣z2∣−1=3+22−1=2+22>0⇒∣z2∣>1residustheoem⇒∫∣z∣=1φ(z)dz=2iπRes(φ,z1)φ(z)=−2i(z−z1)(z−z2)⇒Res(φ,z1)=−2iz1−z2=−2i42=−i22⇒∫∣z∣=1φ(z)dz=2iπ×−i22=π2⇒Ψ=π2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com