Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 146546 by mathmax by abdo last updated on 13/Jul/21

find ∫_(∣z−1∣=3)   ((cos(πz))/((z−2)(z^2 +4)))dz

findz1∣=3cos(πz)(z2)(z2+4)dz

Answered by Olaf_Thorendsen last updated on 14/Jul/21

f(z) = ((cos(πz))/((z−2)(z^2 +4)))  f(z) = ((cos(πz))/((z−2)(z−2i)(z+2i)))  Ω = ∫_(∣z−2∣=1) f(z)dz  Res_2 f = lim_(z→2) (z−2)f(z) = (1/8)  Res_(2i) f = lim_(z→2i) (z−2i)f(z) = ((cos(2iπ))/((2i−2)4i))  = −(((1−i)ch(2π))/(16))  Res_(−2i) f = lim_(z→−2i) (z+2i)f(z) = ((cos(−2iπ))/((−2i−2i)(−4i)))  = −(((1+i)ch(2π))/(16))  Ω = Σ_k Res_z_k  f = (1/8)−(((1−i)ch(2π))/(16))−(((1+i)ch(2π))/(16))  Ω = (1/8)−((ch(2π))/8) = (1/4)sh^2 π

f(z)=cos(πz)(z2)(z2+4)f(z)=cos(πz)(z2)(z2i)(z+2i)Ω=z2∣=1f(z)dzRes2f=limz2(z2)f(z)=18Res2if=limz2i(z2i)f(z)=cos(2iπ)(2i2)4i=(1i)ch(2π)16Res2if=limz2i(z+2i)f(z)=cos(2iπ)(2i2i)(4i)=(1+i)ch(2π)16Ω=kReszkf=18(1i)ch(2π)16(1+i)ch(2π)16Ω=18ch(2π)8=14sh2π

Answered by mathmax by abdo last updated on 14/Jul/21

Ψ=∫_(∣z−1∣=3)    ((cos(πz))/((z−2)(z^2 +4)))dx let Υ(z)=((cos(πz))/((z−2)(z^2 +4)))  ⇒Υ(z)=((cos(πz))/((z−2)(z−2i)(z+2i)))  the poles of Υ are 2 and +^− 2i  (all interior on circle ∣z−∣=3)  ∫_C Υ(z)dz =2iπ{Res(Υ,2) +Res(Υ,2i)+Res(Υ,−2i)}  Res(Υ,2)=((cos(2π))/8)=(1/8)  Res(Υ,2i)=((cos(2πi))/((2i−2)4i))=((cos(2πi))/(8i(i−1)))=((ch(2π))/(8i(i−1)))  Res(Υ,−2i)=((cos(2πi))/((−2i−2)(−4i)))=((ch(2π))/(8i(1+i))) ⇒  ∫_C Υ(z)dz=2iπ{(1/8) +((ch(2π))/(8i(i−1)))+((ch(2π))/(8i(i+1)))}  =((iπ)/4) +(π/4)ch(2π)((1/(i−1))+(1/(i+1))) =((iπ)/4)+(π/4)ch(2π)×((2i)/(−2))  =((iπ)/4)−((iπ)/4)ch(2π)=Ψ

Ψ=z1∣=3cos(πz)(z2)(z2+4)dxletΥ(z)=cos(πz)(z2)(z2+4)Υ(z)=cos(πz)(z2)(z2i)(z+2i)thepolesofΥare2and+2i(allinterioroncirclez∣=3)CΥ(z)dz=2iπ{Res(Υ,2)+Res(Υ,2i)+Res(Υ,2i)}Res(Υ,2)=cos(2π)8=18Res(Υ,2i)=cos(2πi)(2i2)4i=cos(2πi)8i(i1)=ch(2π)8i(i1)Res(Υ,2i)=cos(2πi)(2i2)(4i)=ch(2π)8i(1+i)CΥ(z)dz=2iπ{18+ch(2π)8i(i1)+ch(2π)8i(i+1)}=iπ4+π4ch(2π)(1i1+1i+1)=iπ4+π4ch(2π)×2i2=iπ4iπ4ch(2π)=Ψ

Terms of Service

Privacy Policy

Contact: info@tinkutara.com