Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 146547 by mathmax by abdo last updated on 13/Jul/21

calculate ∫_(∣z∣=5)    ((2−z^2 )/((z^2 +9)(z−i)^2 ))dz

$$\mathrm{calculate}\:\int_{\mid\mathrm{z}\mid=\mathrm{5}} \:\:\:\frac{\mathrm{2}−\mathrm{z}^{\mathrm{2}} }{\left(\mathrm{z}^{\mathrm{2}} +\mathrm{9}\right)\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} }\mathrm{dz} \\ $$

Answered by Olaf_Thorendsen last updated on 14/Jul/21

  f(z) = ((2−z^2 )/((z^2 +9)(z−i)^2 ))  f(z) = ((2−z^2 )/((z−3i)(z+3i)(z−i)^2 ))  Ω = ∫_(∣z∣=5) f(z)dz  Res_(3i) f = lim_(z→3i) (z−3i)f(z) = ((11i)/(24))  Res_(−3i) f = lim_(z→−3i) (z+3i)f(z) = −((11i)/(96))  Res_i f = (1/((2−1)!))lim_(z→i) (∂^(2−1) /∂z^(2−1) )(z−i)^2 f(z)  Res_i f = lim_(z→i) (∂/∂z)(((2−z^2 )/(z^2 +9)))  Res_i f = lim_(z→i) (((−2z(z^2 +9)−(2−z^2 )2z)/((z^2 +9)^2 )))  Res_i f = (((−2i×8−3×2i)/(64))) = −((11i)/(32))    Ω = Σ_k Res_z_k  f = ((11i)/(24))−((11i)/(96))−((11i)/(32)) = 0

$$ \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{2}−{z}^{\mathrm{2}} }{\left({z}^{\mathrm{2}} +\mathrm{9}\right)\left({z}−{i}\right)^{\mathrm{2}} } \\ $$$${f}\left({z}\right)\:=\:\frac{\mathrm{2}−{z}^{\mathrm{2}} }{\left({z}−\mathrm{3}{i}\right)\left({z}+\mathrm{3}{i}\right)\left({z}−{i}\right)^{\mathrm{2}} } \\ $$$$\Omega\:=\:\int_{\mid{z}\mid=\mathrm{5}} {f}\left({z}\right){dz} \\ $$$$\mathrm{Res}_{\mathrm{3}{i}} {f}\:=\:\underset{{z}\rightarrow\mathrm{3}{i}} {\mathrm{lim}}\left({z}−\mathrm{3}{i}\right){f}\left({z}\right)\:=\:\frac{\mathrm{11}{i}}{\mathrm{24}} \\ $$$$\mathrm{Res}_{−\mathrm{3}{i}} {f}\:=\:\underset{{z}\rightarrow−\mathrm{3}{i}} {\mathrm{lim}}\left({z}+\mathrm{3}{i}\right){f}\left({z}\right)\:=\:−\frac{\mathrm{11}{i}}{\mathrm{96}} \\ $$$$\mathrm{Res}_{{i}} {f}\:=\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\underset{{z}\rightarrow{i}} {\mathrm{lim}}\frac{\partial^{\mathrm{2}−\mathrm{1}} }{\partial{z}^{\mathrm{2}−\mathrm{1}} }\left({z}−{i}\right)^{\mathrm{2}} {f}\left({z}\right) \\ $$$$\mathrm{Res}_{{i}} {f}\:=\:\underset{{z}\rightarrow{i}} {\mathrm{lim}}\frac{\partial}{\partial{z}}\left(\frac{\mathrm{2}−{z}^{\mathrm{2}} }{{z}^{\mathrm{2}} +\mathrm{9}}\right) \\ $$$$\mathrm{Res}_{{i}} {f}\:=\:\underset{{z}\rightarrow{i}} {\mathrm{lim}}\left(\frac{−\mathrm{2}{z}\left({z}^{\mathrm{2}} +\mathrm{9}\right)−\left(\mathrm{2}−{z}^{\mathrm{2}} \right)\mathrm{2}{z}}{\left({z}^{\mathrm{2}} +\mathrm{9}\right)^{\mathrm{2}} }\right) \\ $$$$\mathrm{Res}_{{i}} {f}\:=\:\left(\frac{−\mathrm{2}{i}×\mathrm{8}−\mathrm{3}×\mathrm{2}{i}}{\mathrm{64}}\right)\:=\:−\frac{\mathrm{11}{i}}{\mathrm{32}} \\ $$$$ \\ $$$$\Omega\:=\:\underset{{k}} {\sum}\mathrm{Res}_{{z}_{{k}} } {f}\:=\:\frac{\mathrm{11}{i}}{\mathrm{24}}−\frac{\mathrm{11}{i}}{\mathrm{96}}−\frac{\mathrm{11}{i}}{\mathrm{32}}\:=\:\mathrm{0} \\ $$

Commented by mathmax by abdo last updated on 14/Jul/21

thank you sir.

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$

Answered by qaz last updated on 14/Jul/21

poles all inside circle ∣z∣=5,  sum of function residues is 0.i think we dont need to evalue.

$$\mathrm{poles}\:\mathrm{all}\:\mathrm{inside}\:\mathrm{circle}\:\mid\mathrm{z}\mid=\mathrm{5}, \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{function}\:\mathrm{residues}\:\mathrm{is}\:\mathrm{0}.\mathrm{i}\:\mathrm{think}\:\mathrm{we}\:\mathrm{dont}\:\mathrm{need}\:\mathrm{to}\:\mathrm{evalue}. \\ $$

Answered by mathmax by abdo last updated on 14/Jul/21

f(z)=((2−z^2 )/((z^2 +9)(2−i)^2 )) ⇒f(z)=((2−z^2 )/((z−3i)(z+3i)(z−i)^2 ))  the poles of f are 3i,−3i andi  (all interior in the circle ∣z∣=5)  residus theorem ⇒∫_(∣z∣=5) f(z)dz =2iπ{Res(f,3i)+Res(f,−3i)+Res(f,i)}  Res(f,3i)=((2−(3i)^2 )/(6i(2i)^2 ))=−((11)/(12i))  Res(f,−3i)=((2−(−3i)^2 )/((−6i)(−4i)^2 ))=−((11)/(6.16i))=−((11)/(96i))  Res(f,i) =lim_(z→i)    (1/((2−1)!)){(z−i)^2 f(z)}^((1))   =lim_(z→i)    {((2−z^2 )/(z^2 +9))}^((1))  =lim_(z→i)   ((−2z(z^2 +9)−2z(2−z^2 ))/((z^2  +9)^2 ))  =lim_(z→i)    ((−18z−4z)/((z^2  +9)^2 ))=((−22i)/8^2 )=−((22i)/(64))=−((11i)/(32)) ⇒  ∫_(∣z∣=5)   f(z)dz=2iπ{−((11)/(12i))−((11)/(96i))+((11)/(32i))}=....

$$\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2}−\mathrm{z}^{\mathrm{2}} }{\left(\mathrm{z}^{\mathrm{2}} +\mathrm{9}\right)\left(\mathrm{2}−\mathrm{i}\right)^{\mathrm{2}} }\:\Rightarrow\mathrm{f}\left(\mathrm{z}\right)=\frac{\mathrm{2}−\mathrm{z}^{\mathrm{2}} }{\left(\mathrm{z}−\mathrm{3i}\right)\left(\mathrm{z}+\mathrm{3i}\right)\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} } \\ $$$$\mathrm{the}\:\mathrm{poles}\:\mathrm{of}\:\mathrm{f}\:\mathrm{are}\:\mathrm{3i},−\mathrm{3i}\:\mathrm{andi}\:\:\left(\mathrm{all}\:\mathrm{interior}\:\mathrm{in}\:\mathrm{the}\:\mathrm{circle}\:\mid\mathrm{z}\mid=\mathrm{5}\right) \\ $$$$\mathrm{residus}\:\mathrm{theorem}\:\Rightarrow\int_{\mid\mathrm{z}\mid=\mathrm{5}} \mathrm{f}\left(\mathrm{z}\right)\mathrm{dz}\:=\mathrm{2i}\pi\left\{\mathrm{Res}\left(\mathrm{f},\mathrm{3i}\right)+\mathrm{Res}\left(\mathrm{f},−\mathrm{3i}\right)+\mathrm{Res}\left(\mathrm{f},\mathrm{i}\right)\right\} \\ $$$$\mathrm{Res}\left(\mathrm{f},\mathrm{3i}\right)=\frac{\mathrm{2}−\left(\mathrm{3i}\right)^{\mathrm{2}} }{\mathrm{6i}\left(\mathrm{2i}\right)^{\mathrm{2}} }=−\frac{\mathrm{11}}{\mathrm{12i}} \\ $$$$\mathrm{Res}\left(\mathrm{f},−\mathrm{3i}\right)=\frac{\mathrm{2}−\left(−\mathrm{3i}\right)^{\mathrm{2}} }{\left(−\mathrm{6i}\right)\left(−\mathrm{4i}\right)^{\mathrm{2}} }=−\frac{\mathrm{11}}{\mathrm{6}.\mathrm{16i}}=−\frac{\mathrm{11}}{\mathrm{96i}} \\ $$$$\mathrm{Res}\left(\mathrm{f},\mathrm{i}\right)\:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\:\frac{\mathrm{1}}{\left(\mathrm{2}−\mathrm{1}\right)!}\left\{\left(\mathrm{z}−\mathrm{i}\right)^{\mathrm{2}} \mathrm{f}\left(\mathrm{z}\right)\right\}^{\left(\mathrm{1}\right)} \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\:\left\{\frac{\mathrm{2}−\mathrm{z}^{\mathrm{2}} }{\mathrm{z}^{\mathrm{2}} +\mathrm{9}}\right\}^{\left(\mathrm{1}\right)} \:=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\frac{−\mathrm{2z}\left(\mathrm{z}^{\mathrm{2}} +\mathrm{9}\right)−\mathrm{2z}\left(\mathrm{2}−\mathrm{z}^{\mathrm{2}} \right)}{\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{9}\right)^{\mathrm{2}} } \\ $$$$=\mathrm{lim}_{\mathrm{z}\rightarrow\mathrm{i}} \:\:\:\frac{−\mathrm{18z}−\mathrm{4z}}{\left(\mathrm{z}^{\mathrm{2}} \:+\mathrm{9}\right)^{\mathrm{2}} }=\frac{−\mathrm{22i}}{\mathrm{8}^{\mathrm{2}} }=−\frac{\mathrm{22i}}{\mathrm{64}}=−\frac{\mathrm{11i}}{\mathrm{32}}\:\Rightarrow \\ $$$$\int_{\mid\mathrm{z}\mid=\mathrm{5}} \:\:\mathrm{f}\left(\mathrm{z}\right)\mathrm{dz}=\mathrm{2i}\pi\left\{−\frac{\mathrm{11}}{\mathrm{12i}}−\frac{\mathrm{11}}{\mathrm{96i}}+\frac{\mathrm{11}}{\mathrm{32i}}\right\}=.... \\ $$$$ \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 14/Jul/21

sorry  Res(f,3i)=−((11)/(24i))  ...!

$$\mathrm{sorry}\:\:\mathrm{Res}\left(\mathrm{f},\mathrm{3i}\right)=−\frac{\mathrm{11}}{\mathrm{24i}}\:\:...! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com