Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146597 by iloveisrael last updated on 14/Jul/21

    ∫ ((cos 5x+cos 4x)/(1−2cos 3x)) dx =?     ∫ ((√(tan x))/(sin 2x)) dx =?    ∫ (dx/( (√(cos^3 x sin^5 x)))) =?

cos5x+cos4x12cos3xdx=?tanxsin2xdx=?dxcos3xsin5x=?

Answered by gsk2684 last updated on 14/Jul/21

∫((cos 5x+cos 4x)/(1−2cos 3x))dx  ∫ ((2cos ((5x+4x)/2)cos ((5x−4x)/2))/(1−2(2cos^2 ((3x)/2)−1))) dx  2∫((cos 3(((3x)/2))cos (x/2))/(1−4cos^2 ((3x)/2)+2))dx  2∫(([4cos^3 (((3x)/2))−3cos(((3x)/2))] cos (x/2))/(3−4cos^2 ((3x)/2)))dx  2∫(([4cos^2 (((3x)/2))−3]cos ((3x)/2) cos (x/2))/(3−4cos^2 ((3x)/2)))dx  −∫2cos ((3x)/2)cos (x/2)dx  −∫(cos (((3x)/2)+(x/2))+cos (((3x)/2)−(x/2)))dx  −∫(cos 2x+cos x)dx  −(((sin 2x)/2)+sin x)+c

cos5x+cos4x12cos3xdx2cos5x+4x2cos5x4x212(2cos23x21)dx2cos3(3x2)cosx214cos23x2+2dx2[4cos3(3x2)3cos(3x2)]cosx234cos23x2dx2[4cos2(3x2)3]cos3x2cosx234cos23x2dx2cos3x2cosx2dx(cos(3x2+x2)+cos(3x2x2))dx(cos2x+cosx)dx(sin2x2+sinx)+c

Answered by gsk2684 last updated on 14/Jul/21

∫(dx/( (√(cos^3 x sin^5 x))))dx  ∫(1/( cos^4 x(√((cos^3 x sin^5 x)/(cos^8 x)))))dx  ∫((sec^2 x)/( (√(tan^5 x))))sec^2 xdx  ∫ ((1+tan^2 x)/( (√(tan^5 x))))  d(tan x)  ∫(tan^(−(5/2)) x+(1/( (√(tan x)))))d(tan x)  ((tan^(−(5/2)+1) x)/(−(5/2)+1))+2(√(tan x))+c

dxcos3xsin5xdx1cos4xcos3xsin5xcos8xdxsec2xtan5xsec2xdx1+tan2xtan5xd(tanx)(tan52x+1tanx)d(tanx)tan52+1x52+1+2tanx+c

Answered by gsk2684 last updated on 14/Jul/21

∫((√(tan x))/(sin 2x))dx  ∫((√(tan x))/((((2tan x)/(1+tan^2 x))))) dx  =∫(1/(2(√(tan x))))sec^2 x dx  =∫(1/(2(√(tan x)))) d(tan x)  =(√(tan x))+c

tanxsin2xdxtanx(2tanx1+tan2x)dx=12tanxsec2xdx=12tanxd(tanx)=tanx+c

Answered by puissant last updated on 14/Jul/21

2)  ∫((√(tan x))/(sin 2x))dx=K  u=(√(tan x ))⇒u^2 =tan x   2udu=(dx/(cos^2  x))  ⇒ dx=2ucos^2  x dx  K=∫(u/(2sin x cos x))×2ucos^2  x du  =∫(u^2 /(tan x))du=∫(u^2 /u^2 )du= u+c  ⇒K=(√(tan x))+c..

2)tanxsin2xdx=Ku=tanxu2=tanx2udu=dxcos2xdx=2ucos2xdxK=u2sinxcosx×2ucos2xdu=u2tanxdu=u2u2du=u+cK=tanx+c..

Answered by mathmax by abdo last updated on 14/Jul/21

I=∫ ((√(tanx))/(sin(2x)))dx changement tanx=t give  I=∫  ((√t)/((2t)/(1+t^2 )))(dt/(1+t^2 )) =(1/2)∫ (dt/( (√t)))=(√t)+C =(√(tanx)) +C

I=tanxsin(2x)dxchangementtanx=tgiveI=t2t1+t2dt1+t2=12dtt=t+C=tanx+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com