Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 1466 by Rasheed Soomro last updated on 10/Aug/15

Without using calculus find stepwise solution:  lim_(x→−∝)  ((a^x −1)/x) where a>1

$${Without}\:{using}\:{calculus}\:{find}\:{stepwise}\:{solution}: \\ $$ $$\underset{{x}\rightarrow−\propto} {{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}\:{where}\:{a}>\mathrm{1} \\ $$

Answered by 123456 last updated on 11/Aug/15

a>1,x<0⇒a^x <a^0 =1  a^x −1<1−1=0  a^x −1<0  ((a^x −1)/x)>0  0<a^x   −1<a^x −1  −(1/x)>((a^x −1)/x)  lim_(x→−∞)  (1/x)=0  them by squeze theorem since  lim_(x→−∞) − (1/x)=lim_(x→−∞)  0=0  0<((a^x −1)/x)<−(1/x)  then  lim_(x→−∞)  ((a^x −1)/x)=0

$${a}>\mathrm{1},{x}<\mathrm{0}\Rightarrow{a}^{{x}} <{a}^{\mathrm{0}} =\mathrm{1} \\ $$ $${a}^{{x}} −\mathrm{1}<\mathrm{1}−\mathrm{1}=\mathrm{0} \\ $$ $${a}^{{x}} −\mathrm{1}<\mathrm{0} \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}>\mathrm{0} \\ $$ $$\mathrm{0}<{a}^{{x}} \\ $$ $$−\mathrm{1}<{a}^{{x}} −\mathrm{1} \\ $$ $$−\frac{\mathrm{1}}{{x}}>\frac{{a}^{{x}} −\mathrm{1}}{{x}} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}}=\mathrm{0} \\ $$ $$\mathrm{them}\:\mathrm{by}\:\mathrm{squeze}\:\mathrm{theorem}\:\mathrm{since} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}−\:\frac{\mathrm{1}}{{x}}=\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{0}=\mathrm{0} \\ $$ $$\mathrm{0}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{{x}} \\ $$ $$\mathrm{then} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\mathrm{0} \\ $$

Commented byRasheed Ahmad last updated on 11/Aug/15

1st line: a^x <1  ⇒ a^x −1<1−1  ⇒((a^x −1)/x) > ((1−1)/x)      [ ∵ x<0  inequality                                     reversed.]  But  2nd line: ((a^x −1)/x)<((1−1)/x)=0 ???  [ ineq. not reversed?]  Pl explain I want to learn from you.

$$\mathrm{1}{st}\:{line}:\:{a}^{{x}} <\mathrm{1} \\ $$ $$\Rightarrow\:{a}^{{x}} −\mathrm{1}<\mathrm{1}−\mathrm{1} \\ $$ $$\Rightarrow\frac{{a}^{{x}} −\mathrm{1}}{{x}}\:>\:\frac{\mathrm{1}−\mathrm{1}}{{x}}\:\:\:\:\:\:\left[\:\because\:{x}<\mathrm{0}\:\:{inequality}\right. \\ $$ $$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{reversed}.\right] \\ $$ $$\boldsymbol{\mathrm{But}} \\ $$ $$\mathrm{2}{nd}\:{line}:\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\frac{\mathrm{1}−\mathrm{1}}{{x}}=\mathrm{0}\:??? \\ $$ $$\left[\:{ineq}.\:{not}\:{reversed}?\right] \\ $$ $$\boldsymbol{\mathrm{Pl}}\:\boldsymbol{\mathrm{explain}}\:\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{want}}\:\boldsymbol{\mathrm{to}}\:\boldsymbol{\mathrm{learn}}\:\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{you}}. \\ $$

Commented byRasheed Soomro last updated on 11/Aug/15

3rd,4th and 5th lines:  ((a^x −1)/x)<0  0<a^x   ⇒^? −(1/x)<((a^x −1)/x)<0  As I think,may be wrong :  ((a^x −1)/x)<0 ⇒(a^x /x)−(1/x)<0  a^x >0 , x<0 ⇒  (a^x /x)<0 ⇒^? −(1/x)<((a^x −1)/x)<0   How −(1/x)<0 ?  While  according to you x<0?

$$\mathrm{3}\boldsymbol{\mathrm{rd}},\mathrm{4}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{and}}\:\mathrm{5}\boldsymbol{\mathrm{th}}\:\boldsymbol{\mathrm{lines}}: \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\mathrm{0} \\ $$ $$\mathrm{0}<{a}^{{x}} \\ $$ $$\overset{?} {\Rightarrow}−\frac{\mathrm{1}}{{x}}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\mathrm{0} \\ $$ $$\boldsymbol{\mathrm{As}}\:\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{think}},\boldsymbol{\mathrm{may}}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{wrong}}\:: \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\mathrm{0}\:\Rightarrow\frac{{a}^{{x}} }{{x}}−\frac{\mathrm{1}}{{x}}<\mathrm{0} \\ $$ $${a}^{{x}} >\mathrm{0}\:,\:{x}<\mathrm{0}\:\Rightarrow\:\:\frac{{a}^{{x}} }{{x}}<\mathrm{0}\:\overset{?} {\Rightarrow}−\frac{\mathrm{1}}{{x}}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<\mathrm{0}\: \\ $$ $$\boldsymbol{\mathrm{H}}{ow}\:−\frac{\mathrm{1}}{{x}}<\mathrm{0}\:?\:\:{While}\:\:{according}\:{to}\:{you}\:{x}<\mathrm{0}? \\ $$

Commented by123456 last updated on 11/Aug/15

sorry by the mistakes :v  i forgot these details, thank you :)

$$\mathrm{sorry}\:\mathrm{by}\:\mathrm{the}\:\mathrm{mistakes}\::\mathrm{v} \\ $$ $$\left.\mathrm{i}\:\mathrm{forgot}\:\mathrm{these}\:\mathrm{details},\:\mathrm{thank}\:\mathrm{you}\::\right) \\ $$

Commented byRasheed Soomro last updated on 11/Aug/15

Please rewrite   your answer : a mistake−free  answer.   Actually I didn′t mean to complain about lack of detail of  steps.I only wanted to be satisfied about the logic of your  solution.   I am deeply  interested in your solution.I will be Thankful if  you rewrite your answer for me.

$${Please}\:{rewrite}\:\:\:{your}\:{answer}\::\:{a}\:{mistake}−{free}\:\:{answer}.\: \\ $$ $${Actually}\:{I}\:{didn}'{t}\:{mean}\:{to}\:{complain}\:{about}\:{lack}\:{of}\:{detail}\:{of} \\ $$ $${steps}.{I}\:{only}\:{wanted}\:{to}\:{be}\:{satisfied}\:{about}\:{the}\:{logic}\:{of}\:{your} \\ $$ $${solution}. \\ $$ $$\:{I}\:{am}\:{deeply}\:\:{interested}\:{in}\:{your}\:{solution}.{I}\:{will}\:{be}\:\boldsymbol{\mathrm{Thankful}}\:{if} \\ $$ $${you}\:{rewrite}\:{your}\:{answer}\:{for}\:{me}. \\ $$

Commented byRasheed Soomro last updated on 12/Aug/15

THANKS a lot! Now I think the logic is perfect.

$$\boldsymbol{\mathrm{THANKS}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{lot}}!\:\boldsymbol{\mathrm{Now}}\:\boldsymbol{\mathrm{I}}\:\boldsymbol{\mathrm{think}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{logic}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{perfect}}. \\ $$

Answered by 123456 last updated on 12/Aug/15

we have that for a>1, a^x  is crescent, then  x<0⇒a^x <a^0 =1⇒a^x <1  and then  a^x −1<1−1=0⇒a^x −1<0  (−1 in both side)  ((a^x −1)/x)>0 (÷x, and sonce x<0, < turn into >)  we have that a^x >0, then  a^x −1>−1 (−1 in both sides)  ((a^x −1)/x)<−(1/x) (÷x,x<0)  then  0<((a^x −1)/x)<−(1/x)  then the squeze theorem work by this way  since   ((a^x −1)/x) is bounced by 0 and −(1/x)  and  0→0 and −(1/x)→0 as x→−∞  then ((a^x −1)/x)→0 as x→−∞  in formal way remember that  lim_(x→−∞)  f(x)=L  only if  ∀ε>0,∃M∈R,∀x<M,∣f(x)−L∣<ε  them  lim_(x→−∞)  0⇔M∈(−∞,0),x<M⇒∣0−0∣<ε  lim_(x→−∞)  −(1/x)=0⇔M≤−(1/ε),x<M  x<M<0⇒−ε≤(1/M)<(1/x)<0⇒0<−(1/x)<−(1/M)≤ε  ∣−(1/x)−0∣<ε  and finaly, choose the same M above  lim_(x→−∞)  ((a^x −1)/x)=0  x<M  0<((a^x −1)/x)<−(1/x)<−(1/M)≤ε  ∣((a^x −1)/x)−0∣<ε  as desired :)

$$\mathrm{we}\:\mathrm{have}\:\mathrm{that}\:\mathrm{for}\:{a}>\mathrm{1},\:{a}^{{x}} \:\mathrm{is}\:\mathrm{crescent},\:\mathrm{then} \\ $$ $${x}<\mathrm{0}\Rightarrow{a}^{{x}} <{a}^{\mathrm{0}} =\mathrm{1}\Rightarrow{a}^{{x}} <\mathrm{1} \\ $$ $$\mathrm{and}\:\mathrm{then} \\ $$ $${a}^{{x}} −\mathrm{1}<\mathrm{1}−\mathrm{1}=\mathrm{0}\Rightarrow{a}^{{x}} −\mathrm{1}<\mathrm{0}\:\:\left(−\mathrm{1}\:\mathrm{in}\:\mathrm{both}\:\mathrm{side}\right) \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}>\mathrm{0}\:\left(\boldsymbol{\div}{x},\:\mathrm{and}\:\mathrm{sonce}\:{x}<\mathrm{0},\:<\:\mathrm{turn}\:\mathrm{into}\:>\right) \\ $$ $$\mathrm{we}\:\mathrm{have}\:\mathrm{that}\:{a}^{{x}} >\mathrm{0},\:\mathrm{then} \\ $$ $${a}^{{x}} −\mathrm{1}>−\mathrm{1}\:\left(−\mathrm{1}\:\mathrm{in}\:\mathrm{both}\:\mathrm{sides}\right) \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{{x}}\:\left(\boldsymbol{\div}{x},{x}<\mathrm{0}\right) \\ $$ $$\mathrm{then} \\ $$ $$\mathrm{0}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{{x}} \\ $$ $$\mathrm{then}\:\mathrm{the}\:\mathrm{squeze}\:\mathrm{theorem}\:\mathrm{work}\:\mathrm{by}\:\mathrm{this}\:\mathrm{way} \\ $$ $$\mathrm{since}\: \\ $$ $$\frac{{a}^{{x}} −\mathrm{1}}{{x}}\:\mathrm{is}\:\mathrm{bounced}\:\mathrm{by}\:\mathrm{0}\:\mathrm{and}\:−\frac{\mathrm{1}}{{x}}\:\:\mathrm{and} \\ $$ $$\mathrm{0}\rightarrow\mathrm{0}\:\mathrm{and}\:−\frac{\mathrm{1}}{{x}}\rightarrow\mathrm{0}\:\mathrm{as}\:{x}\rightarrow−\infty \\ $$ $$\mathrm{then}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}\rightarrow\mathrm{0}\:\mathrm{as}\:{x}\rightarrow−\infty \\ $$ $$\mathrm{in}\:\mathrm{formal}\:\mathrm{way}\:\mathrm{remember}\:\mathrm{that} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:{f}\left({x}\right)=\mathrm{L} \\ $$ $$\mathrm{only}\:\mathrm{if} \\ $$ $$\forall\epsilon>\mathrm{0},\exists\mathrm{M}\in\mathbb{R},\forall{x}<\mathrm{M},\mid{f}\left({x}\right)−\mathrm{L}\mid<\epsilon \\ $$ $$\mathrm{them} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\mathrm{0}\Leftrightarrow\mathrm{M}\in\left(−\infty,\mathrm{0}\right),{x}<\mathrm{M}\Rightarrow\mid\mathrm{0}−\mathrm{0}\mid<\epsilon \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:−\frac{\mathrm{1}}{{x}}=\mathrm{0}\Leftrightarrow\mathrm{M}\leqslant−\frac{\mathrm{1}}{\epsilon},{x}<\mathrm{M} \\ $$ $${x}<\mathrm{M}<\mathrm{0}\Rightarrow−\epsilon\leqslant\frac{\mathrm{1}}{\mathrm{M}}<\frac{\mathrm{1}}{{x}}<\mathrm{0}\Rightarrow\mathrm{0}<−\frac{\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{\mathrm{M}}\leqslant\epsilon \\ $$ $$\mid−\frac{\mathrm{1}}{{x}}−\mathrm{0}\mid<\epsilon \\ $$ $$\mathrm{and}\:\mathrm{finaly},\:\mathrm{choose}\:\mathrm{the}\:\mathrm{same}\:\mathrm{M}\:\mathrm{above} \\ $$ $$\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\mathrm{0} \\ $$ $${x}<\mathrm{M} \\ $$ $$\mathrm{0}<\frac{{a}^{{x}} −\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{{x}}<−\frac{\mathrm{1}}{\mathrm{M}}\leqslant\epsilon \\ $$ $$\mid\frac{{a}^{{x}} −\mathrm{1}}{{x}}−\mathrm{0}\mid<\epsilon \\ $$ $$\left.\mathrm{as}\:\mathrm{desired}\::\right) \\ $$

Commented byRasheed Ahmad last updated on 17/Aug/15

for a>1, a^x  is crescent.....  what is the meaning of ′crescent′  If a<1 what term will be used?

$$\mathrm{for}\:{a}>\mathrm{1},\:{a}^{{x}} \:\mathrm{is}\:\mathrm{crescent}..... \\ $$ $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{meaning}\:\mathrm{of}\:'\mathrm{crescent}' \\ $$ $$\mathrm{If}\:{a}<\mathrm{1}\:\mathrm{what}\:\mathrm{term}\:\mathrm{will}\:\mathrm{be}\:\mathrm{used}? \\ $$ $$ \\ $$

Commented by123456 last updated on 28/Aug/15

a function is crescent if ∀x,y∈D(f)  x>y⇒f(x)>f(y)  for 0<a<1, a^x  is decrescent, or in other  words  x<y⇒a^x >a^y   if a=0,a^x  is not well defined to x<0  if a<0,a^x  is complex and multi valuated at x∈R/Z

$$\mathrm{a}\:\mathrm{function}\:\mathrm{is}\:\mathrm{crescent}\:\mathrm{if}\:\forall{x},{y}\in\mathrm{D}\left({f}\right) \\ $$ $${x}>{y}\Rightarrow{f}\left({x}\right)>{f}\left({y}\right) \\ $$ $$\mathrm{for}\:\mathrm{0}<{a}<\mathrm{1},\:{a}^{{x}} \:\mathrm{is}\:\mathrm{decrescent},\:\mathrm{or}\:\mathrm{in}\:\mathrm{other} \\ $$ $$\mathrm{words} \\ $$ $${x}<{y}\Rightarrow{a}^{{x}} >{a}^{{y}} \\ $$ $$\mathrm{if}\:{a}=\mathrm{0},{a}^{{x}} \:\mathrm{is}\:\mathrm{not}\:\mathrm{well}\:\mathrm{defined}\:\mathrm{to}\:{x}<\mathrm{0} \\ $$ $$\mathrm{if}\:{a}<\mathrm{0},{a}^{{x}} \:\mathrm{is}\:\mathrm{complex}\:\mathrm{and}\:\mathrm{multi}\:\mathrm{valuated}\:\mathrm{at}\:{x}\in\mathbb{R}/\mathbb{Z} \\ $$

Commented byRasheed Ahmad last updated on 28/Aug/15

Thanks!

$$\boldsymbol{\mathrm{Thanks}}! \\ $$

Answered by Rasheed Soomro last updated on 16/Aug/15

((a^x −1)/x)=(a^x −1)×(1/x)  lim_(x→−∝)  ((a^x −1)/x)=lim_(x→−∝)  (a^x −1)×lim_(x→−∝) ((1/x))                             =( lim_(x→−∝)  a^x −lim_(x→−∝) (1) )×lim_(x→−∝) ((1/x))  Now lim_(x→−∝) a^x =0  for a>1, lim_(x→−∝) (1)=1 and  lim_(x→−∝) ((1/x))=0  Hence     lim_(x→−∝)  ((a^x −1)/x)=(0−1)×0=0    lim_(x→−∝)  ((a^x −1)/x)=0

$$\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\left({a}^{{x}} −\mathrm{1}\right)×\frac{\mathrm{1}}{{x}} \\ $$ $$\underset{{x}\rightarrow−\propto} {{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\underset{{x}\rightarrow−\propto} {{lim}}\:\left({a}^{{x}} −\mathrm{1}\right)×\underset{{x}\rightarrow−\propto} {{lim}}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$ $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\:\underset{{x}\rightarrow−\propto} {{lim}}\:{a}^{{x}} −\underset{{x}\rightarrow−\propto} {{lim}}\left(\mathrm{1}\right)\:\right)×\underset{{x}\rightarrow−\propto} {{lim}}\left(\frac{\mathrm{1}}{{x}}\right) \\ $$ $${Now}\:\underset{{x}\rightarrow−\propto} {{lim}a}^{{x}} =\mathrm{0}\:\:{for}\:{a}>\mathrm{1},\:\underset{{x}\rightarrow−\propto} {{lim}}\left(\mathrm{1}\right)=\mathrm{1}\:{and}\:\:\underset{{x}\rightarrow−\propto} {{lim}}\left(\frac{\mathrm{1}}{{x}}\right)=\mathrm{0} \\ $$ $${Hence}\: \\ $$ $$\:\:\underset{{x}\rightarrow−\propto} {{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\left(\mathrm{0}−\mathrm{1}\right)×\mathrm{0}=\mathrm{0} \\ $$ $$\:\:\underset{{x}\rightarrow−\propto} {{lim}}\:\frac{{a}^{{x}} −\mathrm{1}}{{x}}=\mathrm{0} \\ $$

Commented by123456 last updated on 16/Aug/15

alright. :)

$$\left.\mathrm{alright}.\::\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com