Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 146680 by mathdanisur last updated on 14/Jul/21

Compare:  100^(101)   and   101^(100)

Compare:100101and101100

Answered by Olaf_Thorendsen last updated on 14/Jul/21

log_(10) 101 = 2+log_(10) (1+(1/(100)))  100log_(10) 101 = 200+100log_(10) (1+(1/(100)))  100log_(10) 101 < 200+100×(1/(100))  100log_(10) 101 < 201 < 202 = 101×2 = 101log_(10) 100  100log_(10) 101 < 101log_(10) 100  101^(100)  < 100^(101)

log10101=2+log10(1+1100)100log10101=200+100log10(1+1100)100log10101<200+100×1100100log10101<201<202=101×2=101log10100100log10101<101log10100101100<100101

Commented by mathdanisur last updated on 15/Jul/21

thankyou Ser cool

thankyouSercool

Answered by mr W last updated on 15/Jul/21

y=x^(1/x)   ln y=((ln x)/x)  ((y′)/y)=((1−ln x)/x^2 )  y′=(x^(1/x) /x^2 )(1−ln x)<0 for x>e  that means if x>e, y=x^(1/x)  is  strictly decreasing.  ⇒100^(1/(100)) >101^(1/(101))   ⇒100^((101)/(100)) >101  ⇒100^(101) >101^(100)

y=x1xlny=lnxxyy=1lnxx2y=x1xx2(1lnx)<0forx>ethatmeansifx>e,y=x1xisstrictlydecreasing.1001100>1011101100101100>101100101>101100

Commented by mathdanisur last updated on 15/Jul/21

thankyou Ser cool

thankyouSercool

Commented by mr W last updated on 15/Jul/21

applying this we can get  (3)^(1/3) >(4)^(1/4) >(5)^(1/5) >...  since (4)^(1/4) =(√2), so we get also  (√2)<(3)^(1/3)

applyingthiswecanget33>44>55>...since44=2,sowegetalso2<33

Terms of Service

Privacy Policy

Contact: info@tinkutara.com