Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146761 by tabata last updated on 15/Jul/21

Solve the partial defferintial equation  u_t =a^2 u_(xx)    ,0<x<L ,t>0    u(0,t)=0  and u(L,t)=0  and u_x (x,0)=f(x)

Solvethepartialdefferintialequation ut=a2uxx,0<x<L,t>0 u(0,t)=0andu(L,t)=0andux(x,0)=f(x)

Commented bytabata last updated on 15/Jul/21

?????????]

?????????]

Answered by Olaf_Thorendsen last updated on 15/Jul/21

u_t  = a^2 u_(xx)    (1)  In physics, the two variables t  (the time) and x (the distance)  are always separated :  u(x) = A(t)B(x)  (1) : A′(t)B(x) = a^2 A(t)B′′(x)  ⇒ ((A′(t))/(A(t))) = a^2 ((B′′(x))/(B(x)))  A function of t (left) is equal to a  function of x (right). As t and x are  independent, necessarily it′s a constant   ((A′(t))/(A(t))) = a^2 ((B′′(x))/(B(x))) = constant C_1     (2)  (2) :  ((A′(t))/(A(t))) = C_1  ⇒ A(t) = C_2 e^(C_1 t)   In the real life, C_1 <0 because there is  a dissipation of energy. Let C_1  = −w^2   A(t) = C_2 e^(−w^2 t)   (2) : ((B′′(x))/(B(x))) = (C_1 /a^2 ) = −(w^2 /a^2 )  B′′(x)+(ω^2 /a^2 )B(x) = 0  B(x) = αcos((w/a)x)+βsin((w/a)x)  u(0,t) = 0 ⇒ B(0) = 0 ⇒ α = 0  u(L,t) = 0 ⇒ B(L) = 0  ⇒ βsin(((wL)/a)) = 0 ⇒ ((wL)/a) = 2π  w = ((2πa)/L)  B(x) = βsin(((2πx)/L)) and A(t) = C_2 e^(−((4π^2 a^2 )/L^2 )t)   u(x,t) = A(t)B(x)  u(x,t) = C_2 e^(−((4π^2 a^2 )/L^2 )t) βsin(((2πx)/L))  u(x,t) = C_3 e^(−((4π^2 a^2 )/L^2 )t) sin(((2πx)/L))  u_x (x,t) = ((2π)/L)C_3 e^(−((4π^2 a^2 )/L^2 )t) cos(((2πx)/L))  u_x (x,0) = f(x)  ⇒ ((2π)/L)C_3 cos(((2πx)/L)) = f(x)  ⇒ C_3  = (L/(2π)).((f(x))/(cos(((2πx)/L))))  Finally :  u(x,t) = (L/(2π))e^(−((4π^2 a^2 )/L^2 )t) f(x)tan(((2πx)/L))

ut=a2uxx(1) Inphysics,thetwovariablest (thetime)andx(thedistance) arealwaysseparated: u(x)=A(t)B(x) (1):A(t)B(x)=a2A(t)B(x) A(t)A(t)=a2B(x)B(x) Afunctionoft(left)isequaltoa functionofx(right).Astandxare independent,necessarilyitsaconstant A(t)A(t)=a2B(x)B(x)=constantC1(2) (2):A(t)A(t)=C1A(t)=C2eC1t Inthereallife,C1<0becausethereis adissipationofenergy.LetC1=w2 A(t)=C2ew2t (2):B(x)B(x)=C1a2=w2a2 B(x)+ω2a2B(x)=0 B(x)=αcos(wax)+βsin(wax) u(0,t)=0B(0)=0α=0 u(L,t)=0B(L)=0 βsin(wLa)=0wLa=2π w=2πaL B(x)=βsin(2πxL)andA(t)=C2e4π2a2L2t u(x,t)=A(t)B(x) u(x,t)=C2e4π2a2L2tβsin(2πxL) u(x,t)=C3e4π2a2L2tsin(2πxL) ux(x,t)=2πLC3e4π2a2L2tcos(2πxL) ux(x,0)=f(x) 2πLC3cos(2πxL)=f(x) C3=L2π.f(x)cos(2πxL) Finally: u(x,t)=L2πe4π2a2L2tf(x)tan(2πxL)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com