All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146761 by tabata last updated on 15/Jul/21
Solvethepartialdefferintialequation ut=a2uxx,0<x<L,t>0 u(0,t)=0andu(L,t)=0andux(x,0)=f(x)
Commented bytabata last updated on 15/Jul/21
?????????]
Answered by Olaf_Thorendsen last updated on 15/Jul/21
ut=a2uxx(1) Inphysics,thetwovariablest (thetime)andx(thedistance) arealwaysseparated: u(x)=A(t)B(x) (1):A′(t)B(x)=a2A(t)B″(x) ⇒A′(t)A(t)=a2B″(x)B(x) Afunctionoft(left)isequaltoa functionofx(right).Astandxare independent,necessarilyit′saconstant A′(t)A(t)=a2B″(x)B(x)=constantC1(2) (2):A′(t)A(t)=C1⇒A(t)=C2eC1t Inthereallife,C1<0becausethereis adissipationofenergy.LetC1=−w2 A(t)=C2e−w2t (2):B″(x)B(x)=C1a2=−w2a2 B″(x)+ω2a2B(x)=0 B(x)=αcos(wax)+βsin(wax) u(0,t)=0⇒B(0)=0⇒α=0 u(L,t)=0⇒B(L)=0 ⇒βsin(wLa)=0⇒wLa=2π w=2πaL B(x)=βsin(2πxL)andA(t)=C2e−4π2a2L2t u(x,t)=A(t)B(x) u(x,t)=C2e−4π2a2L2tβsin(2πxL) u(x,t)=C3e−4π2a2L2tsin(2πxL) ux(x,t)=2πLC3e−4π2a2L2tcos(2πxL) ux(x,0)=f(x) ⇒2πLC3cos(2πxL)=f(x) ⇒C3=L2π.f(x)cos(2πxL) Finally: u(x,t)=L2πe−4π2a2L2tf(x)tan(2πxL)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com