Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146767 by qaz last updated on 15/Jul/21

Σ_(n=0) ^∞ (((−1)^n )/(n+1))(1+(1/3)+...+(1/(2n+1)))=?

n=0(1)nn+1(1+13+...+12n+1)=?

Answered by mnjuly1970 last updated on 16/Jul/21

  =Σ_(n=0) ^∞ (((−1)^n )/(n+1)){H_( 2n+1) −(1/2) H_( n) }      =Σ_(n=0) ^∞ (((−1)^n H_(2n+1) )/(n+1))−(1/2)Σ_(n=0) ^∞ (((−1)^n H_n )/(n +1))      =Σ_(n=0) ^∞ (((−1)^n H_(2n+1) )/(n+1)) −(1/2) Σ_(n=0) ^∞ (((−1)^n H_n )/(n+1))         = Σ_(n=0) ^∞ (((−1)^n H_(2n+1) )/(n+1)) +(1/4) log^( 2) (2)       = {Σ_(n=0) ^∞ (((−1)^( n) H_(2n+1) )/(n+1)) =S}+(1/4) log^( 2) (2)  (★)            S := Σ_(n=0) ^∞ (−1)^n (H_( 2n+1) /(n+1)) =?          Σ_(n=1) ^∞ (H_( n) /(n+1)) x^( n) = (1/(2x)) log^( 2) (1−x)          x =i ⇒ Σ_(n=0 ) ^∞  (( H_n )/(n+1)) i^( n) = (1/(2i)) log^( 2)  ((√2) e^(−((iπ)/4)) )...(1)        x = −i ⇒ Σ_(n=1) ^∞ (H_n /(n+1)) (−i )^( n) = (1/(−2i)) log^( 2)  ((√2) e^( ((iπ)/4))  )  + Li_2  (−i)...(2)        (1)−(2)::  Σ_(n=1) ^∞ (( (−1)^( n) (2i) H_( 2n+1) )/(2n+2)) =(1/(2i))(log^2 ((√2) )^  −(π^2 /(16)))   =−(1/4) log^( 2) (2 )+(π^( 2) /(16))   ( ★★)       (★★)→ (★) ..... Answe r:= (π^( 2) /(16)) ■       i corrrcted  my mistake         Sir qaz ....

=n=0(1)nn+1{H2n+112Hn}=n=0(1)nH2n+1n+112n=0(1)nHnn+1=n=0(1)nH2n+1n+112n=0(1)nHnn+1=n=0(1)nH2n+1n+1+14log2(2)={n=0(1)nH2n+1n+1=S}+14log2(2)()S:=n=0(1)nH2n+1n+1=?n=1Hnn+1xn=12xlog2(1x)x=in=0Hnn+1in=12ilog2(2eiπ4)...(1)x=in=1Hnn+1(i)n=12ilog2(2eiπ4)+Li2(i)...(2)(1)(2)::n=1(1)n(2i)H2n+12n+2=12i(log2(2)π216)=14log2(2)+π216()()().....Answer:=π216icorrrctedmymistakeSirqaz....

Commented by qaz last updated on 16/Jul/21

Answer is (π^2 /(16)).Sir

Answerisπ216.Sir

Commented by qaz last updated on 16/Jul/21

The other′s sol....  Σ_(n=0) ^∞ (((−1)^n )/(n+1))(1+(1/3)+...+(1/(2n+1)))  =Σ_(n=0) ^∞ ∫_0 ^1 (((−1)^n (1−x^(2n+2) ))/((n+1)(1−x^2 )))dx  =∫_0 ^1 ((ln2−ln(1+x^2 ))/(1−x^2 ))dx  =∫_0 ^1 ∫_0 ^1 (1/(2−(1−x^2 )y))dydx  =∫_0 ^1 ((tan^(−1) ((√(y/(2−y)))))/( (√(2y−y^2 ))))dy  =(tan^(−1) ((√(y/(2−y)))))^2 ∣_0 ^1   =(π^2 /(16))  −−−−−−−−−−−−−−−−−−−−−  My sol...  Σ_(n=0) ^∞ (((−1)^n )/(n+1))(1+(1/3)+...+(1/(2n+1)))  =∫_0 ^1 Σ_(n=0) ^∞ Σ_(k=0) ^n (((−x)^n )/(2k+1))dx  =∫_0 ^1 Σ_(k=0) ^∞ Σ_(n=k) ^∞ (((−x)^n )/(2k+1))dx  =∫_0 ^1 Σ_(k=0) ^∞ Σ_(n=0) ^∞ (((−x)^(n+k) )/(2k+1))dx  =∫_0 ^1 (Σ_(k=0) ^∞ (((−x)^k )/(2k+1)))(Σ_(n=0) ^∞ (−x)^n )dx  =∫_0 ^1 (1/(1+x))(Σ_(k=0) ^∞ (−x)^k ∫_0 ^1 y^(2k) dy)dx  =∫_0 ^1 (1/(1+x))∫_0 ^1 (1/(1+xy^2 ))dydx  =∫_0 ^1 ((tan^(−1) (√x))/((1+x)(√x)))dx  =(π^2 /(16))

Theotherssol....n=0(1)nn+1(1+13+...+12n+1)=n=001(1)n(1x2n+2)(n+1)(1x2)dx=01ln2ln(1+x2)1x2dx=010112(1x2)ydydx=01tan1(y2y)2yy2dy=(tan1(y2y))201=π216Mysol...n=0(1)nn+1(1+13+...+12n+1)=01n=0nk=0(x)n2k+1dx=01k=0n=k(x)n2k+1dx=01k=0n=0(x)n+k2k+1dx=01(k=0(x)k2k+1)(n=0(x)n)dx=0111+x(k=0(x)k01y2kdy)dx=0111+x0111+xy2dydx=01tan1x(1+x)xdx=π216

Commented by mnjuly1970 last updated on 16/Jul/21

thank you so much...

thankyousomuch...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com