Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146772 by ZiYangLee last updated on 15/Jul/21

If z=cos θ+i sin θ, prove that  cos^6 θ=(1/(32))(cos 6θ+6cos 4θ+15cos 2θ+10).  Hence or otherwise, find the value of                ∫_0 ^( a) (√((a^2 −x^2 )^5 )) dx.

$$\mathrm{If}\:{z}=\mathrm{cos}\:\theta+{i}\:\mathrm{sin}\:\theta,\:\mathrm{prove}\:\mathrm{that} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta=\frac{\mathrm{1}}{\mathrm{32}}\left(\mathrm{cos}\:\mathrm{6}\theta+\mathrm{6cos}\:\mathrm{4}\theta+\mathrm{15cos}\:\mathrm{2}\theta+\mathrm{10}\right). \\ $$$$\mathrm{Hence}\:\mathrm{or}\:\mathrm{otherwise},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:{a}} \sqrt{\left({a}^{\mathrm{2}} −{x}^{\mathrm{2}} \right)^{\mathrm{5}} }\:{dx}. \\ $$

Answered by mathmax by abdo last updated on 15/Jul/21

Ψ=∫_0 ^a (a^2 −x^2 )^(5/2)  dx changement x=asint give  Ψ=∫_0 ^(π/2)  a^5 (cos^5 θ)acosθ dθ =a^6  ∫_0 ^(π/2)  cos^6  θ dθ  =(a^6 /(32)){ ∫_0 ^(π/2)  cos(6θ)dθ +6∫_0 ^(π/2)  cos(4θ)dθ +15∫_0 ^(π/2) cos(2θ)dθ +10∫_0 ^(π/2) [dθ}  =(a^6 /(32)){[(1/6)sin(6θ)]_0 ^(π/2)  +6[(1/4)sin(4θ)]_0 ^(π/2) +15[(1/2)sin(2θ)]_0 ^(π/2)  +5π}  =(a^6 /(32)){0+0+0+5π}=((5π)/(32))a^6   cos^6 θ =(((e^(iθ)  +e^(−iθ) )/2))^6  =(1/2^6 )Σ_(k=0) ^6  C_6 ^k  (e^(iθ) )^k  (e^(−iθ) )^(6−k)   =(1/2^6 )Σ_(k=0) ^6 C_6 ^k  e^(ikθ+ikθ−6iθ)  =(1/2^6 )Σ_(k=0) ^6  C_6 ^k  e^(i(2k−6)θ)   =.....

$$\Psi=\int_{\mathrm{0}} ^{\mathrm{a}} \left(\mathrm{a}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} \right)^{\frac{\mathrm{5}}{\mathrm{2}}} \:\mathrm{dx}\:\mathrm{changement}\:\mathrm{x}=\mathrm{asint}\:\mathrm{give} \\ $$$$\Psi=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{a}^{\mathrm{5}} \left(\mathrm{cos}^{\mathrm{5}} \theta\right)\mathrm{acos}\theta\:\mathrm{d}\theta\:=\mathrm{a}^{\mathrm{6}} \:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}^{\mathrm{6}} \:\theta\:\mathrm{d}\theta \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\left(\mathrm{6}\theta\right)\mathrm{d}\theta\:+\mathrm{6}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\mathrm{cos}\left(\mathrm{4}\theta\right)\mathrm{d}\theta\:+\mathrm{15}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{cos}\left(\mathrm{2}\theta\right)\mathrm{d}\theta\:+\mathrm{10}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left[\mathrm{d}\theta\right\}\right. \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\left[\frac{\mathrm{1}}{\mathrm{6}}\mathrm{sin}\left(\mathrm{6}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\mathrm{6}\left[\frac{\mathrm{1}}{\mathrm{4}}\mathrm{sin}\left(\mathrm{4}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} +\mathrm{15}\left[\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\theta\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\mathrm{5}\pi\right\} \\ $$$$=\frac{\mathrm{a}^{\mathrm{6}} }{\mathrm{32}}\left\{\mathrm{0}+\mathrm{0}+\mathrm{0}+\mathrm{5}\pi\right\}=\frac{\mathrm{5}\pi}{\mathrm{32}}\mathrm{a}^{\mathrm{6}} \\ $$$$\mathrm{cos}^{\mathrm{6}} \theta\:=\left(\frac{\mathrm{e}^{\mathrm{i}\theta} \:+\mathrm{e}^{−\mathrm{i}\theta} }{\mathrm{2}}\right)^{\mathrm{6}} \:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \:\mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\left(\mathrm{e}^{\mathrm{i}\theta} \right)^{\mathrm{k}} \:\left(\mathrm{e}^{−\mathrm{i}\theta} \right)^{\mathrm{6}−\mathrm{k}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{ik}\theta+\mathrm{ik}\theta−\mathrm{6i}\theta} \:=\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{6}} }\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{6}} \:\mathrm{C}_{\mathrm{6}} ^{\mathrm{k}} \:\mathrm{e}^{\mathrm{i}\left(\mathrm{2k}−\mathrm{6}\right)\theta} \\ $$$$=..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com