Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146780 by tabata last updated on 15/Jul/21

find by residue ∫_0 ^( 2π)  (dθ/(1+ksinθ))   ,0<k<1

findbyresidue02πdθ1+ksinθ,0<k<1

Answered by mathmax by abdo last updated on 15/Jul/21

Φ=∫_0 ^(2π)  (dx/(1+ksinx)) ⇒Φ=_(e^(ix)  =z)   ∫_(∣z∣=1)    (dz/(iz(1+k((z−z^(−1) )/(2i)))))  =∫_(∣z∣=1)     ((2idz)/(iz(2i+kz−kz^(−1) ))) =∫_(∣z∣=1)   ((2dz)/(2iz+kz^2 −k))  ϕ(z)=(2/(kz^2  +2iz−k))  Δ^′  =−1+k^2 <0 ⇒z_1 =((−i+i(√(1−k^2 )))/k) and z_2 =((−i−i(√(1−k^2 )))/k)  ∣z_1 ∣−1=((√(1+1−k^2 ))/k)−1 =(((√(2−k^2 ))−k)/k)>0⇒∣z_1 ∣>1 ⇒Res=0  ∣z_2 ∣−1=((√(1+1−k^2 ))/k)−1>1 ⇒Res=0 ⇒∫_R ϕ(2)dz=0 ⇒Φ=0

Φ=02πdx1+ksinxΦ=eix=zz∣=1dziz(1+kzz12i) =z∣=12idziz(2i+kzkz1)=z∣=12dz2iz+kz2k φ(z)=2kz2+2izk Δ=1+k2<0z1=i+i1k2kandz2=ii1k2k z11=1+1k2k1=2k2kk>0⇒∣z1∣>1Res=0 z21=1+1k2k1>1Res=0Rφ(2)dz=0Φ=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com