Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146790 by puissant last updated on 15/Jul/21

∫(1/x) e^(−(1/x^2 )) dx

$$\int\frac{\mathrm{1}}{\mathrm{x}}\:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \mathrm{dx} \\ $$

Answered by Cyriille last updated on 15/Jul/21

I=∫(1/x)e^(-(1/x^2 )) dx  let u=e^(-(1/x^2 ))   ⇒du=(1/x)e^(-(1/x^2 )) dx  ⇒I=∫du=u+k,    k∈R  ⇒I=e^(-(1/x^2 )) +k,      k∈R

$$\boldsymbol{\mathrm{I}}=\int\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx} \\ $$$${let}\:{u}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow{du}=\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} {dx} \\ $$$$\Rightarrow\boldsymbol{\mathrm{I}}=\int{du}={u}+{k},\:\:\:\:{k}\in\boldsymbol{\mathrm{R}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{I}}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} +{k},\:\:\:\:\:\:{k}\in\boldsymbol{\mathrm{R}} \\ $$

Commented by puissant last updated on 15/Jul/21

at the level of the third line what   is the derivative sir.?

$$\mathrm{at}\:\mathrm{the}\:\mathrm{level}\:\mathrm{of}\:\mathrm{the}\:\mathrm{third}\:\mathrm{line}\:\mathrm{what}\: \\ $$$$\mathrm{is}\:\mathrm{the}\:\mathrm{derivative}\:\mathrm{sir}.? \\ $$

Commented by mathmax by abdo last updated on 16/Jul/21

(d/dx)(e^(−(1/x^2 )) )=(−(1/x^2 ))^′  e^(−(1/x^2 ))  =((2x)/x^4 )e^(−(1/x^2 ))   =(2/x^3 )e^(−(1/x^2 ))   answer given not correct...!

$$\frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \right)=\left(−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }\right)^{'} \:\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:=\frac{\mathrm{2x}}{\mathrm{x}^{\mathrm{4}} }\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \:\:=\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\mathrm{e}^{−\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} }} \\ $$$$\mathrm{answer}\:\mathrm{given}\:\mathrm{not}\:\mathrm{correct}...! \\ $$

Commented by puissant last updated on 16/Jul/21

done then sir

$$\mathrm{done}\:\mathrm{then}\:\mathrm{sir} \\ $$

Commented by Cyriille last updated on 16/Jul/21

By definition,  (d/dx)(e^(f(x)) )=f^( ′) (x)e^(f(x))   (d/dx)((1/x^2 ))=(d/dx)(x^(-2) )=-x^(-1) =-(1/x)  (d/dx)(e^(-(1/x^2 )) )=-((1/x^2 ))^′  e^(-(1/x^2 )) =-(-(1/x))e^(-(1/x^2 ))   ⇒ (d/dx)(e^(-(1/x^2 )) )=(1/x)e^(-(1/x^2 ))

$$\mathrm{By}\:\mathrm{definition}, \\ $$$$\frac{{d}}{{dx}}\left({e}^{{f}\left({x}\right)} \right)={f}^{\:'} \left({x}\right){e}^{{f}\left({x}\right)} \\ $$$$\frac{\mathrm{d}}{\mathrm{d}{x}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=\frac{{d}}{{dx}}\left({x}^{-\mathrm{2}} \right)=-{x}^{-\mathrm{1}} =-\frac{\mathrm{1}}{{x}} \\ $$$$\frac{{d}}{{dx}}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=-\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{'} \:{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} =-\left(-\frac{\mathrm{1}}{{x}}\right){e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$\Rightarrow\:\frac{{d}}{{dx}}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$$$ \\ $$

Commented by Cyriille last updated on 16/Jul/21

⇒∫d(e^(-(1/x^2 )) )=∫(1/x)e^(-(1/x^2 ))  dx  , ∫((1/x)e^(-(1/x^2 )) )dx=e^(-(1/x^2 ))

$$\Rightarrow\int{d}\left({e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right)=\int\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \:{dx} \\ $$$$,\:\int\left(\frac{\mathrm{1}}{{x}}{e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \right){dx}={e}^{-\frac{\mathrm{1}}{{x}^{\mathrm{2}} }} \\ $$

Commented by mathmax by abdo last updated on 16/Jul/21

d(x^(−2) )=−2x^(−3)  =−(2/x^3 ) ⇒d(−x^(−2) )=(2/x^3 )

$$\mathrm{d}\left(\mathrm{x}^{−\mathrm{2}} \right)=−\mathrm{2x}^{−\mathrm{3}} \:=−\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} }\:\Rightarrow\mathrm{d}\left(−\mathrm{x}^{−\mathrm{2}} \right)=\frac{\mathrm{2}}{\mathrm{x}^{\mathrm{3}} } \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com