Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 146793 by KONE last updated on 15/Jul/21

∀n≥2, u_n =Π_(k=2) ^n cos ((π/2^k )) et v_n =u_n sin ((π/2^n ))  convergence, nature, sens of variations and adjantes?  u_n  and v_n   help me please

$$\forall{n}\geqslant\mathrm{2},\:{u}_{{n}} =\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\mathrm{cos}\:\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:{et}\:{v}_{{n}} ={u}_{{n}} \mathrm{sin}\:\left(\frac{\pi}{\mathrm{2}^{{n}} }\right) \\ $$$${convergence},\:{nature},\:{sens}\:{of}\:{variations}\:{and}\:{adjantes}? \\ $$$${u}_{{n}} \:{and}\:{v}_{{n}} \\ $$$${help}\:{me}\:{please} \\ $$

Answered by Olaf_Thorendsen last updated on 15/Jul/21

sin2θ = 2sinθcosθ  cosθ = ((sin2θ)/(2sinθ))  ⇒ cos((π/2^k )) = ((sin((π/2^(k−1) )))/(2sin((π/2^k ))))  u_n  = Π_(k=2) ^n  cos((π/2^k )) =Π_(k=2) ^n  ((sin((π/2^(k−1) )))/(2sin((π/2^k ))))  (telescopic product)  u_n  =((sin((π/2)))/(2^(n−1) sin((π/2^n )))) = (1/(2^(n−1) sin((π/2^n ))))  u_n  ∼ (1/(2^(n−1) ×(π/2^n ))) = (2/π)  v_n  = u_n sin((π/2^n )) = (1/2^(n−1) ) →_∞  0  (u_(n+1) /u_n ) = ((sin((π/2^n )))/(2sin((π/2^(n+1) )))) = ((sin((π/2^n )))/(4sin((π/2^n ))cos((π/2^n ))))  (u_(n+1) /u_n ) = (1/(4cos((π/2^n ))))  n ≥ 2 ⇔ (π/2^n ) ≤ (π/4)  cos((π/2^n )) ≥ (1/( (√2)))  (1/(4cos((π/2^n )))) ≤ (1/(4/( (√2)))) = ((√2)/4) < 1 ⇒ (u_n ) ↘  (v_(n+1) /v_n ) = (2^(n−1) /2^n ) = (1/2) < 1 ⇒ (v_n ) ↘

$$\mathrm{sin2}\theta\:=\:\mathrm{2sin}\theta\mathrm{cos}\theta \\ $$$$\mathrm{cos}\theta\:=\:\frac{\mathrm{sin2}\theta}{\mathrm{2sin}\theta} \\ $$$$\Rightarrow\:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:=\:\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{k}−\mathrm{1}} }\right)}{\mathrm{2sin}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)} \\ $$$${u}_{{n}} \:=\:\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\:\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)\:=\underset{{k}=\mathrm{2}} {\overset{{n}} {\prod}}\:\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{k}−\mathrm{1}} }\right)}{\mathrm{2sin}\left(\frac{\pi}{\mathrm{2}^{{k}} }\right)} \\ $$$$\left(\mathrm{telescopic}\:\mathrm{product}\right) \\ $$$${u}_{{n}} \:=\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}\right)}{\mathrm{2}^{{n}−\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} \mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)} \\ $$$${u}_{{n}} \:\sim\:\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} ×\frac{\pi}{\mathrm{2}^{{n}} }}\:=\:\frac{\mathrm{2}}{\pi} \\ $$$${v}_{{n}} \:=\:{u}_{{n}} \mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\:\underset{\infty} {\rightarrow}\:\mathrm{0} \\ $$$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\:=\:\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}{\mathrm{2sin}\left(\frac{\pi}{\mathrm{2}^{{n}+\mathrm{1}} }\right)}\:=\:\frac{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}{\mathrm{4sin}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)} \\ $$$$\frac{{u}_{{n}+\mathrm{1}} }{{u}_{{n}} }\:=\:\frac{\mathrm{1}}{\mathrm{4cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)} \\ $$$${n}\:\geqslant\:\mathrm{2}\:\Leftrightarrow\:\frac{\pi}{\mathrm{2}^{{n}} }\:\leqslant\:\frac{\pi}{\mathrm{4}} \\ $$$$\mathrm{cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)\:\geqslant\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{\mathrm{1}}{\mathrm{4cos}\left(\frac{\pi}{\mathrm{2}^{{n}} }\right)}\:\leqslant\:\frac{\mathrm{1}}{\frac{\mathrm{4}}{\:\sqrt{\mathrm{2}}}}\:=\:\frac{\sqrt{\mathrm{2}}}{\mathrm{4}}\:<\:\mathrm{1}\:\Rightarrow\:\left({u}_{{n}} \right)\:\searrow \\ $$$$\frac{{v}_{{n}+\mathrm{1}} }{{v}_{{n}} }\:=\:\frac{\mathrm{2}^{{n}−\mathrm{1}} }{\mathrm{2}^{{n}} }\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:<\:\mathrm{1}\:\Rightarrow\:\left({v}_{{n}} \right)\:\searrow \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com