All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 146835 by mathmax by abdo last updated on 16/Jul/21
calculate∫0∞dx(x2+3)2(x2+4)2
Answered by mathmax by abdo last updated on 16/Jul/21
Ψ=12∫−∞+∞dx(x2+3)2(x2+4)2letφ(z)=1(z2+3)2(z2+4)2⇒φ(z)=1(z−i3)2(z+i3)2(z−2i)2(z+2i)2thepolesofφare+−i3and+−2i(doubles)residus⇒∫−∞+∞φ(z)dz=2iπ{Res(φ,i3)+Res(φ,2i)}Res(φ,i3)=limz→i31(2−1)!{(z−i3)2φ(z)}(1)=limz→i3{1(z+i3)2(z2+4)2}=−limz→i32(z+i3)(z2+4)2+4z(z2+4)(z+i3)2(z+i3)4(z2+4)4=−limz→i32(z2+4)+4z(z+i3)(z+i3)3(z2+4)3=−2(−3+4)+4i3(2i3)(2i3)3(−3+4)3=−2−24−8i(33)=−22243i=−11123iRes(φ,2i)=limz→2i1(2−1)!{(z−2i)2φ(z)}(1)=limz→2i{1(z2+3)2(z+2i)2}(1)=−limz→2i4z(z2+3)(z+2i)2+2(z+2i)(z2+3)2(z2+3)4(z+2i)4=−limz→2i4z(z+2i)+2(z2+3)(z2+3)3(z+2i)3=−(8i)(4i)+2(−4+3)(−4+3)3(4i)3=−−32−2(−1)(−48i)=−−3448i=3448i⇒⇒∫−∞+∞φ(z)dz=2iπ{−11123i+1724i}=−11π63+17π12=(1712−1163)π⇒Ψ=π2(1712−1163)
Answered by Olaf_Thorendsen last updated on 16/Jul/21
f(a,b)=∫0∞dx(x2+a2)(x2+b2)(1)f(a,b)=1b2−a2∫0∞(1x2+a2−1x2+b2)dxf(a,b)=1b2−a2[1aarctanxa−1barctanxb]0∞f(a,b)=1b2−a2.π2(1a−1b)f(a,b)=π2ab(a+b)(2)(1):∂f(a,b)∂a=−2a∫0∞dx(x2+a2)2(x2+b2)∂2f(a,b)∂a∂b=4ab∫0∞dx(x2+a2)2(x2+b2)2∂2f(a,b)∂a∂b=4abf(a,b)(3)(2):∂f(a,b)∂a=−π(2a+b)2a2b(a+b)2∂f2(a,b)∂a∂b=πa2b2[a3+4a2b+4ab2+b3(a+b)4](4)(3)and(4):f(a,b)=π4a3b3[a3+4a2b+4ab2+b3(a+b)4]Ω=∫0∞dx(x2+3)(x2+4)=f(3,2)⇒Ω=π963[193+32(3+2)4]Ω=π963(32+19397+563)Ω=π963(513−88)Ω=π4(178−1139)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com