Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 146835 by mathmax by abdo last updated on 16/Jul/21

calculate ∫_0 ^∞   (dx/((x^2  +3)^2 (x^2  +4)^2 ))

calculate0dx(x2+3)2(x2+4)2

Answered by mathmax by abdo last updated on 16/Jul/21

Ψ=(1/2)∫_(−∞) ^(+∞)  (dx/((x^2 +3)^2 (x^2  +4)^2 )) let ϕ(z)=(1/((z^2 +3)^2 (z^2  +4)^2 ))  ⇒ϕ(z)=(1/((z−i(√3))^2 (z+i(√3))^2 (z−2i)^2 (z+2i)^2 ))  the poles of ϕ are +^− i(√3) and +^− 2i(doubles)  residus ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{Res(ϕ,i(√3))+Res(ϕ,2i)}  Res(ϕ,i(√3))=lim_(z→i(√3))   (1/((2−1)!)){(z−i(√3))^2 ϕ(z)}^((1))   =lim_(z→i(√3)) {(1/((z+i(√3))^2 (z^2  +4)^2 ))}  =−lim_(z→i(√3))    ((2(z+i(√3))(z^2  +4)^2  +4z(z^2  +4)(z+i(√3))^2 )/((z+i(√3))^4 (z^2  +4)^4 ))  =−lim_(z→i(√3))     ((2(z^2  +4)+4z(z+i(√3)))/((z+i(√3))^3 (z^2  +4)^3 ))  =−((2(−3+4)+4i(√3)(2i(√3)))/((2i(√3))^3 (−3+4)^3 ))=−((2−24)/(−8i(3(√3))))=−((22)/(24(√3)i))=−((11)/(12(√3)i))  Res(ϕ,2i)=lim_(z→2i)   (1/((2−1)!)){(z−2i)^2 ϕ(z)}^((1))   =lim_(z→2i)     {(1/((z^2  +3)^2 (z+2i)^2 ))}^((1))   =−lim_(z→2i)     ((4z(z^2  +3)(z+2i)^2  +2(z+2i)(z^2  +3)^2 )/((z^2  +3)^4 (z+2i)^4 ))  =−lim_(z→2i)     ((4z(z+2i)+2(z^2  +3))/((z^2  +3)^3 (z+2i)^3 ))  =−(((8i)(4i)+2(−4+3))/((−4+3)^3 (4i)^3 ))=−((−32−2)/((−1)(−48i)))=−((−34)/(48i))=((34)/(48i)) ⇒  ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=2iπ{−((11)/(12(√3)i))+((17)/(24i))}  =−((11π)/(6(√3))) +((17π)/(12)) =(((17)/(12))−((11)/(6(√3))))π ⇒Ψ=(π/2)(((17)/(12))−((11)/(6(√3))))

Ψ=12+dx(x2+3)2(x2+4)2letφ(z)=1(z2+3)2(z2+4)2φ(z)=1(zi3)2(z+i3)2(z2i)2(z+2i)2thepolesofφare+i3and+2i(doubles)residus+φ(z)dz=2iπ{Res(φ,i3)+Res(φ,2i)}Res(φ,i3)=limzi31(21)!{(zi3)2φ(z)}(1)=limzi3{1(z+i3)2(z2+4)2}=limzi32(z+i3)(z2+4)2+4z(z2+4)(z+i3)2(z+i3)4(z2+4)4=limzi32(z2+4)+4z(z+i3)(z+i3)3(z2+4)3=2(3+4)+4i3(2i3)(2i3)3(3+4)3=2248i(33)=22243i=11123iRes(φ,2i)=limz2i1(21)!{(z2i)2φ(z)}(1)=limz2i{1(z2+3)2(z+2i)2}(1)=limz2i4z(z2+3)(z+2i)2+2(z+2i)(z2+3)2(z2+3)4(z+2i)4=limz2i4z(z+2i)+2(z2+3)(z2+3)3(z+2i)3=(8i)(4i)+2(4+3)(4+3)3(4i)3=322(1)(48i)=3448i=3448i+φ(z)dz=2iπ{11123i+1724i}=11π63+17π12=(17121163)πΨ=π2(17121163)

Answered by Olaf_Thorendsen last updated on 16/Jul/21

f(a,b) = ∫_0 ^∞ (dx/((x^2 +a^2 )(x^2 +b^2 )))   (1)  f(a,b) = (1/(b^2 −a^2 ))∫_0 ^∞ ((1/(x^2 +a^2 ))−(1/(x^2 +b^2 ))) dx  f(a,b) = (1/(b^2 −a^2 ))[(1/a)arctan(x/a)−(1/b)arctan(x/b)]_0 ^∞   f(a,b) = (1/(b^2 −a^2 )).(π/2)((1/a)−(1/b))  f(a,b) = (π/(2ab(a+b)))   (2)  (1)  : ((∂f(a,b))/∂a) = −2a∫_0 ^∞ (dx/((x^2 +a^2 )^2 (x^2 +b^2 )))   ((∂^2 f(a,b))/(∂a∂b)) = 4ab∫_0 ^∞ (dx/((x^2 +a^2 )^2 (x^2 +b^2 )^2 ))  ((∂^2 f(a,b))/(∂a∂b)) = 4abf(a,b)   (3)     (2) : ((∂f(a,b))/∂a) = −((π(2a+b))/(2a^2 b(a+b)^2 ))  ((∂f^2 (a,b))/(∂a∂b)) = (π/(a^2 b^2 ))[((a^3 +4a^2 b+4ab^2 +b^3 )/((a+b)^4 ))]  (4)  (3) and (4) :  f(a,b) = (π/(4a^3 b^3 ))[((a^3 +4a^2 b+4ab^2 +b^3 )/((a+b)^4 ))]  Ω = ∫_0 ^∞ (dx/((x^2 +3)(x^2 +4)))  = f((√3),2)  ⇒ Ω = (π/( 96(√3)))[((19(√3)+32)/(((√3)+2)^4 ))]  Ω = (π/( 96(√3)))(((32+19(√3))/(97+56(√3))))  Ω = (π/( 96(√3)))(51(√3)−88)  Ω = (π/4)(((17)/8)−((11(√3))/9))

f(a,b)=0dx(x2+a2)(x2+b2)(1)f(a,b)=1b2a20(1x2+a21x2+b2)dxf(a,b)=1b2a2[1aarctanxa1barctanxb]0f(a,b)=1b2a2.π2(1a1b)f(a,b)=π2ab(a+b)(2)(1):f(a,b)a=2a0dx(x2+a2)2(x2+b2)2f(a,b)ab=4ab0dx(x2+a2)2(x2+b2)22f(a,b)ab=4abf(a,b)(3)(2):f(a,b)a=π(2a+b)2a2b(a+b)2f2(a,b)ab=πa2b2[a3+4a2b+4ab2+b3(a+b)4](4)(3)and(4):f(a,b)=π4a3b3[a3+4a2b+4ab2+b3(a+b)4]Ω=0dx(x2+3)(x2+4)=f(3,2)Ω=π963[193+32(3+2)4]Ω=π963(32+19397+563)Ω=π963(51388)Ω=π4(1781139)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com