All Questions Topic List
Trigonometry Questions
Previous in All Question Next in All Question
Previous in Trigonometry Next in Trigonometry
Question Number 146876 by gsk2684 last updated on 16/Jul/21
ifthemaximumvalueof4sin2x+3cos2x+sinx2+cosx2+3isa+bthenfinda+b
Answered by liberty last updated on 16/Jul/21
f(x)=4sin2x+3−3sin2x+3+sin(x2)+cos(x2)f(x)=sin2x+sin(x2)+cos(x2)+6f(x)=sin2x+sin(x2)+cos(x2)+6f′(x)=sin2x+12cos(x2)−12sin(x2)=0sin2x=12sin(x2)−12cos(x2)2sin2x−sin(x2)+cos(x2)=0letx2=u→x=2u2sin4u+(cosu−sinu)=04sin2u(cos2u−sin2u)+(cosu−sinu)=0(cosu−sinu){4sin2u(cosu+sinu)+1}=0(∙)cosu−sinu=0cosu=sinu⇒tan(x2)=1x=π2f(π2)=1+6+22+22=7+2fmax=7+2≈8.414213then{a=7b=2⇒a+b=9
Commented by gsk2684 last updated on 16/Jul/21
thankyou
Commented by liberty last updated on 16/Jul/21
Terms of Service
Privacy Policy
Contact: info@tinkutara.com