Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 146901 by mathmax by abdo last updated on 16/Jul/21

g(x)=cos(2arcsinx)    calculate (dg/dx) and (d^2 g/dx^2 )  2)find ∫_(−(1/2)) ^(1/2)  g(x)dx

g(x)=cos(2arcsinx)calculatedgdxandd2gdx22)find1212g(x)dx

Answered by ArielVyny last updated on 18/Jul/21

(dg/dx)=−2(1/( (√(1−x^2 ))))sin(2arcsinx)  (d^2 g/dx^2 )=−2[−(((−2x)/(2(√(1−x^2 ))))/(1−x^2 ))sin(2arcsinx)−2(1/( (√(1−x^2 ))))cos(2arsinx)]  =−2[−((−x)/( (√(1−x^2 ))))×(1/(1−x^2 ))sin(2arsinx)−2(1/( (√(1−x^2 ))))cos(2arcsinx)]  (d^2 g/dx^2 )=−2[((xsin(2arcsinx))/((1−x^2 )^(3/2) ))−2((cos(2arcsinx))/( (√(1−x^2 ))))]    2   ...∫_(−(1/2)) ^(1/2) cos[2arcsinx]dx  f(x)=cos(2arcsinx) est paire donc  ∫_(−(1/2)) ^(1/2) cos(2arcsinx)dx=2∫_0 ^(1/2) cos(2arcsinx)dx  on pose du=1→u=x  v=cos(2arcsinx)→dv=−2(1/( (√(1−x^2 ))))sin(2arcsinx)  I=2[xcos(2arcsinx)]+2∫_0 ^(1/2) ((2x)/( (√(1−x^2 ))))sin(2arcsinx)dx  du=((2x)/( (√(1−x^2 ))))→u=−(√(1−x^2 ))  v=sin(2arcsinx)→dv=2(1/( (√(1−x^2 ))))cos(2arsinx)  I=[2xcos(2arcsinx)]_0 ^1 −[2(√(1−x^2 ))sin(2arcsinx)]_0 ^1 +2∫_0 ^1 (2/( (√(1−x^2 ))))cos(2arcsinx)  I=[2xcos(2arcsinx)−2(√(1−x^2 ))sin(2arcsinx)+2sin(2arcsinx)]_0 ^1   I=−2  Mr mathmax still chek my work  please

dgdx=211x2sin(2arcsinx)d2gdx2=2[2x21x21x2sin(2arcsinx)211x2cos(2arsinx)]=2[x1x2×11x2sin(2arsinx)211x2cos(2arcsinx)]d2gdx2=2[xsin(2arcsinx)(1x2)322cos(2arcsinx)1x2]2...1212cos[2arcsinx]dxf(x)=cos(2arcsinx)estpairedonc1212cos(2arcsinx)dx=2012cos(2arcsinx)dxonposedu=1u=xv=cos(2arcsinx)dv=211x2sin(2arcsinx)I=2[xcos(2arcsinx)]+20122x1x2sin(2arcsinx)dxdu=2x1x2u=1x2v=sin(2arcsinx)dv=211x2cos(2arsinx)I=[2xcos(2arcsinx)]01[21x2sin(2arcsinx)]01+20121x2cos(2arcsinx)I=[2xcos(2arcsinx)21x2sin(2arcsinx)+2sin(2arcsinx)]01I=2Mrmathmaxstillchekmyworkplease

Terms of Service

Privacy Policy

Contact: info@tinkutara.com