All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 146977 by tabata last updated on 16/Jul/21
find(1)∫Cez2z2+4z+3dz,C:∣z−2∣=5(2)∫−∞∞cosxx2+2x+2dx
Answered by mathmax by abdo last updated on 17/Jul/21
1)Φ=∫Cez2z2+4z+3dzwithC→∣z−2∣=5Δ′=4−3=1⇒z1=−2+1=−1andz2=−2−1=−3f(z)=ez2(z−z1)(z−z2)residus⇒∫Cf(z)dz=2iπ{Res(f,z1)+Res(f,z2)}=2iπ{ez12z1−z2+ez22z2−z1}=2iπ{e2+e9−2}=iπ{e−e9}
Ψ=∫−∞+∞cosxx2+2x+2dx=Re(∫−∞+∞eixx2+2x+2dx)letφ(z)=eizz2+2x+2polesofφ?Δ′=1−2=−1⇒z1=−1+iandz2=−1−i⇒φ(z)=eiz(z−z1)(z−z2)residus⇒∫Rφ(z)dz=2iπRes(φ/z1)=2iπ.eiz1z1−z2=2iπ.ei(−1+i)2i=πe−1.e−i=πe(cos(1)−isin(1))⇒Ψ=πecos(1)(1=1radian)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com