All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 147007 by Ar Brandon last updated on 17/Jul/21
Answered by Olaf_Thorendsen last updated on 17/Jul/21
(1)f(x)=∑∞n=0anxnf′(x)=∑∞n=1nanxn−1=∑∞n=0(n+1)an+1xnf″(x)=∑∞n=1n(n+1)an+1xn−1f″(x)=∑∞n=0(n+1)(n+2)an+2xnxf″(x)+2f′(x)+xf(x)=0∑∞n=0(n+1)(n+2)an+2xn+1+2∑∞n=0(n+1)an+1xn+∑∞n=0anxn+1=0∑∞n=0(n+1)(n+2)an+2xn+1+2a1+2∑∞n=0(n+2)an+2xn+1+∑∞n=0anxn+1=0Necessairementa1=0Etparidentificationdespuissancescomparables:(n+1)(n+2)an+2+2(n+2)an+2+an=0an+2=−an(n+2)(n+3)(2)Commea1=0⇒a2p+1=0Etpourlesindicespairs:a2=−a02.3=−12.3=−13!a4=−a24.5=(−1)212.3.4.5=15!...etc...a2p=(−1)p(2p+1)!eta2p+1=0(3)Comptetenudescriteressurlesseriesalternees,f(x)convergepartoutsurRet:f(x)=∑∞n=0(−1)px2p(2p+1)!xf(x)=∑∞n=0(−1)px2p+1(2p+1)!=sinxetdoncf(x)=sinxxOnpourraitverifier,avecsaformeexplicitequefverifiebienl′equationdifferentielle.
Commented by Ar Brandon last updated on 17/Jul/21
Mercibeaucoupmonsieur.Bienlejour!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com