Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 147008 by gsk2684 last updated on 17/Jul/21

find the number of values of cot θ   where θ∈[(π/(12)) (π/2)] satisfying the   equation [tan θ.[cot θ]]=1 ?   (where [x] is greatest integer  less than or equal to x)

$${find}\:{the}\:{number}\:{of}\:{values}\:{of}\:\mathrm{cot}\:\theta\: \\ $$$${where}\:\theta\in\left[\frac{\pi}{\mathrm{12}}\:\frac{\pi}{\mathrm{2}}\right]\:{satisfying}\:{the}\: \\ $$$${equation}\:\left[\mathrm{tan}\:\theta.\left[\mathrm{cot}\:\theta\right]\right]=\mathrm{1}\:?\: \\ $$$$\left({where}\:\left[{x}\right]\:{is}\:{greatest}\:{integer}\right. \\ $$$$\left.{less}\:{than}\:{or}\:{equal}\:{to}\:{x}\right) \\ $$

Commented by gsk2684 last updated on 22/Jul/21

[tan θ[cot θ]]=1⇒1≤tan θ[cot θ]<2  [cot θ]∈{0,1,2,3} if  θ∈[(π/(12))  (π/2)]  i)[cot θ]=1  ⇒1≤cot θ<2⇒cot^(−1) 2<θ≤(π/4)  then (1/2)<tan θ≤1 &1≤tan θ<2  ⇒tan θ=1  ⇒θ=(π/4)  ii)[cot θ]=2  ⇒2≤cot θ<3⇒cot^(−1) 3<θ≤cot^(−1) 2  then (1/3)<tan θ≤(1/2) &1≤2 tan θ<2   (1/3)<tan θ≤(1/2) &(1/2)≤ tan θ<1  ⇒tan θ=(1/2)⇒(π/(12))<θ<(π/4)  iii)[cot θ]=3  ⇒3≤cot θ<cot (π/(12))⇒(π/(12))<θ≤cot^(−1) 3  then 2−(√3)<tan θ≤(1/3) &1≤3 tan θ<2   2−(√3)<tan θ≤(1/3) &(1/3)≤ tan θ<(2/3)  ⇒tan θ=(1/3)⇒(π/(12))<θ<(π/4)  ans 3 values exist

$$\left[\mathrm{tan}\:\theta\left[\mathrm{cot}\:\theta\right]\right]=\mathrm{1}\Rightarrow\mathrm{1}\leqslant\mathrm{tan}\:\theta\left[\mathrm{cot}\:\theta\right]<\mathrm{2} \\ $$$$\left[\mathrm{cot}\:\theta\right]\in\left\{\mathrm{0},\mathrm{1},\mathrm{2},\mathrm{3}\right\}\:{if}\:\:\theta\in\left[\frac{\pi}{\mathrm{12}}\:\:\frac{\pi}{\mathrm{2}}\right] \\ $$$$\left.{i}\right)\left[\mathrm{cot}\:\theta\right]=\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}\leqslant\mathrm{cot}\:\theta<\mathrm{2}\Rightarrow\mathrm{cot}^{−\mathrm{1}} \mathrm{2}<\theta\leqslant\frac{\pi}{\mathrm{4}} \\ $$$${then}\:\frac{\mathrm{1}}{\mathrm{2}}<\mathrm{tan}\:\theta\leqslant\mathrm{1}\:\&\mathrm{1}\leqslant\mathrm{tan}\:\theta<\mathrm{2} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\mathrm{1} \\ $$$$\Rightarrow\theta=\frac{\pi}{\mathrm{4}} \\ $$$$\left.{ii}\right)\left[\mathrm{cot}\:\theta\right]=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}\leqslant\mathrm{cot}\:\theta<\mathrm{3}\Rightarrow\mathrm{cot}^{−\mathrm{1}} \mathrm{3}<\theta\leqslant\mathrm{cot}^{−\mathrm{1}} \mathrm{2} \\ $$$${then}\:\frac{\mathrm{1}}{\mathrm{3}}<\mathrm{tan}\:\theta\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:\&\mathrm{1}\leqslant\mathrm{2}\:\mathrm{tan}\:\theta<\mathrm{2} \\ $$$$\:\frac{\mathrm{1}}{\mathrm{3}}<\mathrm{tan}\:\theta\leqslant\frac{\mathrm{1}}{\mathrm{2}}\:\&\frac{\mathrm{1}}{\mathrm{2}}\leqslant\:\mathrm{tan}\:\theta<\mathrm{1} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\frac{\pi}{\mathrm{12}}<\theta<\frac{\pi}{\mathrm{4}} \\ $$$$\left.{iii}\right)\left[\mathrm{cot}\:\theta\right]=\mathrm{3} \\ $$$$\Rightarrow\mathrm{3}\leqslant\mathrm{cot}\:\theta<\mathrm{cot}\:\frac{\pi}{\mathrm{12}}\Rightarrow\frac{\pi}{\mathrm{12}}<\theta\leqslant\mathrm{cot}^{−\mathrm{1}} \mathrm{3} \\ $$$${then}\:\mathrm{2}−\sqrt{\mathrm{3}}<\mathrm{tan}\:\theta\leqslant\frac{\mathrm{1}}{\mathrm{3}}\:\&\mathrm{1}\leqslant\mathrm{3}\:\mathrm{tan}\:\theta<\mathrm{2} \\ $$$$\:\mathrm{2}−\sqrt{\mathrm{3}}<\mathrm{tan}\:\theta\leqslant\frac{\mathrm{1}}{\mathrm{3}}\:\&\frac{\mathrm{1}}{\mathrm{3}}\leqslant\:\mathrm{tan}\:\theta<\frac{\mathrm{2}}{\mathrm{3}} \\ $$$$\Rightarrow\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{3}}\Rightarrow\frac{\pi}{\mathrm{12}}<\theta<\frac{\pi}{\mathrm{4}} \\ $$$${ans}\:\mathrm{3}\:{values}\:{exist} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com