Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 147008 by gsk2684 last updated on 17/Jul/21

find the number of values of cot θ   where θ∈[(π/(12)) (π/2)] satisfying the   equation [tan θ.[cot θ]]=1 ?   (where [x] is greatest integer  less than or equal to x)

findthenumberofvaluesofcotθwhereθ[π12π2]satisfyingtheequation[tanθ.[cotθ]]=1?(where[x]isgreatestintegerlessthanorequaltox)

Commented by gsk2684 last updated on 22/Jul/21

[tan θ[cot θ]]=1⇒1≤tan θ[cot θ]<2  [cot θ]∈{0,1,2,3} if  θ∈[(π/(12))  (π/2)]  i)[cot θ]=1  ⇒1≤cot θ<2⇒cot^(−1) 2<θ≤(π/4)  then (1/2)<tan θ≤1 &1≤tan θ<2  ⇒tan θ=1  ⇒θ=(π/4)  ii)[cot θ]=2  ⇒2≤cot θ<3⇒cot^(−1) 3<θ≤cot^(−1) 2  then (1/3)<tan θ≤(1/2) &1≤2 tan θ<2   (1/3)<tan θ≤(1/2) &(1/2)≤ tan θ<1  ⇒tan θ=(1/2)⇒(π/(12))<θ<(π/4)  iii)[cot θ]=3  ⇒3≤cot θ<cot (π/(12))⇒(π/(12))<θ≤cot^(−1) 3  then 2−(√3)<tan θ≤(1/3) &1≤3 tan θ<2   2−(√3)<tan θ≤(1/3) &(1/3)≤ tan θ<(2/3)  ⇒tan θ=(1/3)⇒(π/(12))<θ<(π/4)  ans 3 values exist

[tanθ[cotθ]]=11tanθ[cotθ]<2[cotθ]{0,1,2,3}ifθ[π12π2]i)[cotθ]=11cotθ<2cot12<θπ4then12<tanθ1&1tanθ<2tanθ=1θ=π4ii)[cotθ]=22cotθ<3cot13<θcot12then13<tanθ12&12tanθ<213<tanθ12&12tanθ<1tanθ=12π12<θ<π4iii)[cotθ]=33cotθ<cotπ12π12<θcot13then23<tanθ13&13tanθ<223<tanθ13&13tanθ<23tanθ=13π12<θ<π4ans3valuesexist

Terms of Service

Privacy Policy

Contact: info@tinkutara.com