All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 147060 by ArielVyny last updated on 17/Jul/21
∫0π2e2xtanxdx
Answered by mathmax by abdo last updated on 17/Jul/21
Ψ=∫0π2e2xtanxdxchangementtanx=zgivex=arctan(z2)Ψ=∫0∞e2arctan(z2)z×2z1+z4dz=2∫0∞z2e2arctan(z2)1+z4dzφ(z)=z2e2arctan(z2)z4+1⇒φ(z)=z2e2arctan(z2)(z2−i)(z2+i)=z2e2arctan(z2)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)wecanuserdsidusbutthiswayisnotsure...!∫Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,−e−iπ4)}Res(φ,eiπ4)=ie2arctan(i)2eiπ4(2i)=14e−iπ4e2arctan(i)Res(φ,−e−iπ4)=(−i)e2arctan(−i)−2e−iπ4(−2i)=−14eiπ4e2arctan(−i)⇒∫−∞+∞φ(z)dz=iπ2{e−iπ4.e2arctan(i)+eiπ4e2arctan(−i)}...becontinued....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com