Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147060 by ArielVyny last updated on 17/Jul/21

∫_0 ^(π/2) e^(2x) (√(tanx))dx

0π2e2xtanxdx

Answered by mathmax by abdo last updated on 17/Jul/21

Ψ=∫_0 ^(π/(2 ))  e^(2x) (√(tanx))dx  changement (√(tanx))=z give x=arctan(z^2 )  Ψ=∫_0 ^∞  e^(2arctan(z^2 )) z ×((2z)/(1+z^4 ))dz =2∫_0 ^∞  ((z^2  e^(2arctan(z^2 )) )/(1+z^4 ))dz  ϕ(z)=((z^2  e^(2arctan(z^2 )) )/(z^4  +1)) ⇒ϕ(z)=((z^2  e^(2arctan(z^2 )) )/((z^2 −i)(z^2  +i)))  =((z^2  e^(2arctan(z^2 )) )/((z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  we can use rdsidus  but this way is not sure...!  ∫_R ϕ(z)dz=2iπ{Res(ϕ ,e^((iπ)/4) ) +Res(ϕ,−e^(−((iπ)/4)) )}  Res(ϕ,e^((iπ)/4) ) =((ie^(2arctan(i)) )/(2e^((iπ)/4) (2i)))=(1/4)e^(−((iπ)/4)) e^(2arctan(i))   Res(ϕ,−e^(−((iπ)/4)) ) =(((−i)e^(2arctan(−i)) )/(−2e^(−((iπ)/4)) (−2i)))=−(1/4)e^((iπ)/4)  e^(2arctan(−i))   ⇒∫_(−∞) ^(+∞)  ϕ(z)dz=((iπ)/2){e^(−((iπ)/4)) .e^(2arctan(i))  +e^((iπ)/4)  e^(2arctan(−i)) }  ...be continued....

Ψ=0π2e2xtanxdxchangementtanx=zgivex=arctan(z2)Ψ=0e2arctan(z2)z×2z1+z4dz=20z2e2arctan(z2)1+z4dzφ(z)=z2e2arctan(z2)z4+1φ(z)=z2e2arctan(z2)(z2i)(z2+i)=z2e2arctan(z2)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)wecanuserdsidusbutthiswayisnotsure...!Rφ(z)dz=2iπ{Res(φ,eiπ4)+Res(φ,eiπ4)}Res(φ,eiπ4)=ie2arctan(i)2eiπ4(2i)=14eiπ4e2arctan(i)Res(φ,eiπ4)=(i)e2arctan(i)2eiπ4(2i)=14eiπ4e2arctan(i)+φ(z)dz=iπ2{eiπ4.e2arctan(i)+eiπ4e2arctan(i)}...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com