Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147061 by liberty last updated on 17/Jul/21

     ∫_( 0 ) ^( ∞)  (x^a /((1+x^3 ))) (dx/x) =?     0<a<3

0xa(1+x3)dxx=? 0<a<3

Answered by Ar Brandon last updated on 17/Jul/21

I=∫_0 ^∞ (x^a /((1+x^3 )))∙(dx/x), x=u^(1/3) ⇒dx=(1/3)u^(−(2/3)) du    =(1/3)∫_0 ^∞ (u^((a/3)−1) /((1+u)))du=(1/3)β((a/3), 1−(a/3))    =(1/3)∙((Γ((a/3))Γ(1−(a/3)))/(Γ(1)))=(1/3)∙(π/(sin((a/3)π)))

I=0xa(1+x3)dxx,x=u13dx=13u23du =130ua31(1+u)du=13β(a3,1a3) =13Γ(a3)Γ(1a3)Γ(1)=13πsin(a3π)

Answered by mathmax by abdo last updated on 17/Jul/21

Φ=∫_0 ^∞  (x^(a−1) /(1+x^3 ))dx  changement x^3  =t give x=t^(1/3)  and  Φ=(1/3)∫_0 ^∞    (t^((a−1)/3) /(1+t))t^((1/3)−1)  dt =(1/3)∫_0 ^∞   (t^(((a−1)/3)−(2/3)) /(1+t))dt  =(1/3)∫_0 ^∞   (t^((a/3)−1) /(1+t))dt =(1/3)×(π/(sin(((πa)/3))))=(π/(3sin(((πa)/3))))

Φ=0xa11+x3dxchangementx3=tgivex=t13and Φ=130ta131+tt131dt=130ta13231+tdt =130ta311+tdt=13×πsin(πa3)=π3sin(πa3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com