Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147116 by Rasheed.Sindhi last updated on 18/Jul/21

a+b+c=1  a^2 +b^2 +c^2 =1  a^3 +b^3 +c^3 =1  a , b , c =?

$${a}+{b}+{c}=\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{1} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{1} \\ $$$${a}\:,\:{b}\:,\:{c}\:=? \\ $$

Commented by mr W last updated on 18/Jul/21

(a,b,c)=(0,0,1)  we can get ab+bc+ca=0, abc=0,  therefore a,b,c are roots of  x^3 −x^2 +0x+0=0 ⇒x^2 (x−1)=0   ⇒x∈(0,0,1)

$$\left({a},{b},{c}\right)=\left(\mathrm{0},\mathrm{0},\mathrm{1}\right) \\ $$$${we}\:{can}\:{get}\:{ab}+{bc}+{ca}=\mathrm{0},\:{abc}=\mathrm{0}, \\ $$$${therefore}\:{a},{b},{c}\:{are}\:{roots}\:{of} \\ $$$${x}^{\mathrm{3}} −{x}^{\mathrm{2}} +\mathrm{0}{x}+\mathrm{0}=\mathrm{0}\:\Rightarrow{x}^{\mathrm{2}} \left({x}−\mathrm{1}\right)=\mathrm{0}\: \\ $$$$\Rightarrow{x}\in\left(\mathrm{0},\mathrm{0},\mathrm{1}\right) \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jul/21

Sir I ′ve tried to solve in a different  way in which 2 also appears as a  root. I know this can′t satisfy the  system.But then I can′t deside   whether it′s extraneous root because  I haven′t squared any equation.  Please see my solution and guide  me as  you always do.

$$\mathcal{S}{ir}\:{I}\:'{ve}\:{tried}\:{to}\:{solve}\:{in}\:{a}\:{different} \\ $$$${way}\:{in}\:{which}\:\mathrm{2}\:{also}\:{appears}\:{as}\:{a} \\ $$$${root}.\:{I}\:{know}\:{this}\:{can}'{t}\:{satisfy}\:{the} \\ $$$${system}.{But}\:{then}\:{I}\:{can}'{t}\:{deside}\: \\ $$$${whether}\:{it}'{s}\:{extraneous}\:{root}\:{because} \\ $$$${I}\:{haven}'{t}\:{squared}\:{any}\:{equation}. \\ $$$${Please}\:{see}\:{my}\:{solution}\:{and}\:{guide} \\ $$$${me}\:{as}\:\:{you}\:{always}\:{do}. \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jul/21

Sorry sir I found my error when  I solved it this time!  Thanks Sir.

$${Sorry}\:{sir}\:{I}\:{found}\:{my}\:{error}\:{when} \\ $$$${I}\:{solved}\:{it}\:{this}\:{time}! \\ $$$$\mathcal{T}{hanks}\:\mathcal{S}{ir}. \\ $$

Commented by mr W last updated on 18/Jul/21

i think you also get the right answer  in that way. you get c=1 then a+b=0  and ab=0, i.e. a=b=0. or c=0 then  a+b=1 and ab=0, i.e. a=1, b=0 or  a=0, b=1.

$${i}\:{think}\:{you}\:{also}\:{get}\:{the}\:{right}\:{answer} \\ $$$${in}\:{that}\:{way}.\:{you}\:{get}\:{c}=\mathrm{1}\:{then}\:{a}+{b}=\mathrm{0} \\ $$$${and}\:{ab}=\mathrm{0},\:{i}.{e}.\:{a}={b}=\mathrm{0}.\:{or}\:{c}=\mathrm{0}\:{then} \\ $$$${a}+{b}=\mathrm{1}\:{and}\:{ab}=\mathrm{0},\:{i}.{e}.\:{a}=\mathrm{1},\:{b}=\mathrm{0}\:{or} \\ $$$${a}=\mathrm{0},\:{b}=\mathrm{1}. \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jul/21

ThanX for this nice trick Sir,  I didn′t think of that.

$$\mathcal{T}{han}\mathcal{X}\:{for}\:{this}\:{nice}\:{trick}\:\mathcal{S}{ir}, \\ $$$${I}\:{didn}'{t}\:{think}\:{of}\:{that}. \\ $$

Answered by Olaf_Thorendsen last updated on 18/Jul/21

a+b+c = 1  a^2 +b^2 +c^2  = 1  a^3 +b^3 +c^3  = 1    a^2 +b^2 +c^2  = (a+b+c)^2 −2(ab+bc+ca)  1 = 1−2(ab+bc+ca)  ab+bc+ca = 0    a^3 +b^3 +c^3  = (a+b+c)(a^2 +b^2 +c^2 )  −(ab^2 +ac^2 +a^2 b+bc^2 +a^2 c+b^2 c)    1 = 1×1−(ab^2 +ac^2 +a^2 b+bc^2 +a^2 c+b^2 c)    0 = a(ab+ca)+b(ab+bc)+c(bc+ca)  0 = a(−bc)+b(−ca)+c(−ab)  abc = 0  we verify that a = 0 ⇒ b = 0 and c = 1  or b = 1 and c = 0    S = {(1,0,0) ; (0,1,0) ; (0,0,1)}

$${a}+{b}+{c}\:=\:\mathrm{1} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \:=\:\mathrm{1} \\ $$$$ \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \:=\:\left({a}+{b}+{c}\right)^{\mathrm{2}} −\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\mathrm{1}\:=\:\mathrm{1}−\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$${ab}+{bc}+{ca}\:=\:\mathrm{0} \\ $$$$ \\ $$$${a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} \:=\:\left({a}+{b}+{c}\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right) \\ $$$$−\left({ab}^{\mathrm{2}} +{ac}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}+{bc}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}+{b}^{\mathrm{2}} {c}\right) \\ $$$$ \\ $$$$\mathrm{1}\:=\:\mathrm{1}×\mathrm{1}−\left({ab}^{\mathrm{2}} +{ac}^{\mathrm{2}} +{a}^{\mathrm{2}} {b}+{bc}^{\mathrm{2}} +{a}^{\mathrm{2}} {c}+{b}^{\mathrm{2}} {c}\right) \\ $$$$ \\ $$$$\mathrm{0}\:=\:{a}\left({ab}+{ca}\right)+{b}\left({ab}+{bc}\right)+{c}\left({bc}+{ca}\right) \\ $$$$\mathrm{0}\:=\:{a}\left(−{bc}\right)+{b}\left(−{ca}\right)+{c}\left(−{ab}\right) \\ $$$${abc}\:=\:\mathrm{0} \\ $$$${we}\:{verify}\:{that}\:{a}\:=\:\mathrm{0}\:\Rightarrow\:{b}\:=\:\mathrm{0}\:\mathrm{and}\:{c}\:=\:\mathrm{1} \\ $$$$\mathrm{or}\:{b}\:=\:\mathrm{1}\:\mathrm{and}\:{c}\:=\:\mathrm{0} \\ $$$$ \\ $$$$\mathcal{S}\:=\:\left\{\left(\mathrm{1},\mathrm{0},\mathrm{0}\right)\:;\:\left(\mathrm{0},\mathrm{1},\mathrm{0}\right)\:;\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right)\right\} \\ $$

Commented by Rasheed.Sindhi last updated on 18/Jul/21

Thanks Sir Olaf! I always appreciate  your precious contribution towards this  forum!

$$\mathcal{T}{hanks}\:\mathcal{S}{ir}\:\mathrm{Olaf}!\:{I}\:{always}\:{appreciate} \\ $$$${your}\:{precious}\:{contribution}\:{towards}\:{this} \\ $$$${forum}! \\ $$

Answered by Rasheed.Sindhi last updated on 18/Jul/21

a+b+c=a^2 +b^2 +c^2 =a^3 +b^3 +c^3 =1_(−) ;a,b,c=?  (i)⇒a+b=1−c  (ii)⇒(a+b)^2 −2ab+c^2 −1=0           (1−c)^2 −2ab+c^2 −1=0           ab=((1−2c+c^2 +c^2 −1)/2)=c^2 −c...A  (iii)⇒(a+b)^3 −3ab(a+b)+c^3 −1=0        (1−c)^3 −3ab(1−c)−(1−c^3 )=0   (1−c){(1−c)^2 −3ab−(1+c+c^2 )}=0  c=1 ∨ 1−2c+c^2 −3ab−1−c−c^2 =0                    ab=−c...........................B  A & B :   c^2 −c=−c                     c^2 =0⇒c=0  Observing symmetric nature of  the system we can fix same values  for a & b.  •   •^(•)  (a,b,c)=(1,0,0) , (0,1,0) , (0,0,1)

$$\underset{−} {{a}+{b}+{c}={a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ={a}^{\mathrm{3}} +{b}^{\mathrm{3}} +{c}^{\mathrm{3}} =\mathrm{1}};{a},{b},{c}=? \\ $$$$\left({i}\right)\Rightarrow{a}+{b}=\mathrm{1}−{c} \\ $$$$\left({ii}\right)\Rightarrow\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{ab}+{c}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\left(\mathrm{1}−{c}\right)^{\mathrm{2}} −\mathrm{2}{ab}+{c}^{\mathrm{2}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:{ab}=\frac{\mathrm{1}−\mathrm{2}{c}+{c}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}}={c}^{\mathrm{2}} −{c}...{A} \\ $$$$\left({iii}\right)\Rightarrow\left({a}+{b}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left({a}+{b}\right)+{c}^{\mathrm{3}} −\mathrm{1}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\left(\mathrm{1}−{c}\right)^{\mathrm{3}} −\mathrm{3}{ab}\left(\mathrm{1}−{c}\right)−\left(\mathrm{1}−{c}^{\mathrm{3}} \right)=\mathrm{0} \\ $$$$\:\left(\mathrm{1}−{c}\right)\left\{\left(\mathrm{1}−{c}\right)^{\mathrm{2}} −\mathrm{3}{ab}−\left(\mathrm{1}+{c}+{c}^{\mathrm{2}} \right)\right\}=\mathrm{0} \\ $$$${c}=\mathrm{1}\:\vee\:\cancel{\mathrm{1}}−\mathrm{2}{c}+\cancel{{c}^{\mathrm{2}} }−\mathrm{3}{ab}−\cancel{\mathrm{1}}−{c}−\cancel{{c}^{\mathrm{2}} }=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{ab}=−{c}...........................{B} \\ $$$${A}\:\&\:{B}\::\:\:\:{c}^{\mathrm{2}} −{c}=−{c} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{c}^{\mathrm{2}} =\mathrm{0}\Rightarrow{c}=\mathrm{0} \\ $$$${Observing}\:{symmetric}\:{nature}\:{of} \\ $$$${the}\:{system}\:{we}\:{can}\:{fix}\:{same}\:{values} \\ $$$${for}\:{a}\:\&\:{b}. \\ $$$$\overset{\bullet} {\bullet\:\:\:\bullet}\:\left({a},{b},{c}\right)=\left(\mathrm{1},\mathrm{0},\mathrm{0}\right)\:,\:\left(\mathrm{0},\mathrm{1},\mathrm{0}\right)\:,\:\left(\mathrm{0},\mathrm{0},\mathrm{1}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com