Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147119 by mathdanisur last updated on 18/Jul/21

if   x>−1 , q≥2   then:  (1+x)^q  ≥ 1+qx+(q−1)x^2

$${if}\:\:\:{x}>−\mathrm{1}\:,\:{q}\geqslant\mathrm{2}\:\:\:{then}: \\ $$ $$\left(\mathrm{1}+{x}\right)^{\boldsymbol{{q}}} \:\geqslant\:\mathrm{1}+{qx}+\left({q}−\mathrm{1}\right){x}^{\mathrm{2}} \\ $$

Answered by mindispower last updated on 18/Jul/21

  1+qx+(q−1)x^2 =(q−1)(x+1)(x+(1/(q−1)))  ⇔(((1+x)^(q−1) )/(q−1))≥x+(1/(q−1))  ⇔(1+x)^(q−1) ≥(q−1)x+1  f(x)=(1+x)^(q−1) −((q−1)x+1)  f′(x)=(q−1)((1+x)^(q−2) −1)  f′(x)>0,x∈[0,∞[  f′(x)<0,x∈]−1,0[  ⇒∀x∈]−1,+∞[  ⇒f(x)≥f(0)=(1+0)^(q−1) −1=0  ⇒f(x)≥0⇔(1+x)^(q−1) ≥(q−1)x+1

$$ \\ $$ $$\mathrm{1}+{qx}+\left({q}−\mathrm{1}\right){x}^{\mathrm{2}} =\left({q}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)\left({x}+\frac{\mathrm{1}}{{q}−\mathrm{1}}\right) \\ $$ $$\Leftrightarrow\frac{\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} }{{q}−\mathrm{1}}\geqslant{x}+\frac{\mathrm{1}}{{q}−\mathrm{1}} \\ $$ $$\Leftrightarrow\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} \geqslant\left({q}−\mathrm{1}\right){x}+\mathrm{1} \\ $$ $${f}\left({x}\right)=\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} −\left(\left({q}−\mathrm{1}\right){x}+\mathrm{1}\right) \\ $$ $${f}'\left({x}\right)=\left({q}−\mathrm{1}\right)\left(\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{2}} −\mathrm{1}\right) \\ $$ $${f}'\left({x}\right)>\mathrm{0},{x}\in\left[\mathrm{0},\infty\left[\right.\right. \\ $$ $$\left.{f}'\left({x}\right)<\mathrm{0},{x}\in\right]−\mathrm{1},\mathrm{0}\left[\right. \\ $$ $$\left.\Rightarrow\forall{x}\in\right]−\mathrm{1},+\infty\left[\right. \\ $$ $$\Rightarrow{f}\left({x}\right)\geqslant{f}\left(\mathrm{0}\right)=\left(\mathrm{1}+\mathrm{0}\right)^{{q}−\mathrm{1}} −\mathrm{1}=\mathrm{0} \\ $$ $$\Rightarrow{f}\left({x}\right)\geqslant\mathrm{0}\Leftrightarrow\left(\mathrm{1}+{x}\right)^{{q}−\mathrm{1}} \geqslant\left({q}−\mathrm{1}\right){x}+\mathrm{1} \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$ $$ \\ $$

Commented bymathdanisur last updated on 19/Jul/21

thank you Ser

$${thank}\:{you}\:{Ser} \\ $$

Answered by mathmax by abdo last updated on 19/Jul/21

⇒(1+x)^n ≥1+nx+(n−1)x^2  ⇒  p_n (x)=(1+x)^n −1−nx−(n−1)x^2 ≥0   (p_n )by recurrence on n  n=2 ⇒(1+x)^2 −1−2x−x^2  =0≥0 true  let suppose p_n (x)≥0 and prove p_(n+1) (x)≥0  p_(n+1) (x)=(1+x)^(n+1) −1−(n+1)x−nx^2   =(1+x)(1+x)^n −1−(n+1)x−nx^2   =(1+x){p_n (x)+1+nx+(n−1)x^2 }−1−(n+1)x−nx^2   =p_n (x)+1+nx+(n−1)x^2  +xp_n (x)+x+nx^2 +(n−1)x^3 −1−(n+1)x−nx^2   =(1+x)p_n (x)+(n−1)x^(2 ) +(n−1)x^3 ≥0 due to p_n ≥0 and n−1≥1

$$\Rightarrow\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} \geqslant\mathrm{1}+\mathrm{nx}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} \:\Rightarrow \\ $$ $$\mathrm{p}_{\mathrm{n}} \left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} −\mathrm{1}−\mathrm{nx}−\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} \geqslant\mathrm{0}\:\:\:\left(\mathrm{p}_{\mathrm{n}} \right)\mathrm{by}\:\mathrm{recurrence}\:\mathrm{on}\:\mathrm{n} \\ $$ $$\mathrm{n}=\mathrm{2}\:\Rightarrow\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} −\mathrm{1}−\mathrm{2x}−\mathrm{x}^{\mathrm{2}} \:=\mathrm{0}\geqslant\mathrm{0}\:\mathrm{true} \\ $$ $$\mathrm{let}\:\mathrm{suppose}\:\mathrm{p}_{\mathrm{n}} \left(\mathrm{x}\right)\geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{prove}\:\mathrm{p}_{\mathrm{n}+\mathrm{1}} \left(\mathrm{x}\right)\geqslant\mathrm{0} \\ $$ $$\mathrm{p}_{\mathrm{n}+\mathrm{1}} \left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}+\mathrm{1}} −\mathrm{1}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}−\mathrm{nx}^{\mathrm{2}} \\ $$ $$=\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{n}} −\mathrm{1}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}−\mathrm{nx}^{\mathrm{2}} \\ $$ $$=\left(\mathrm{1}+\mathrm{x}\right)\left\{\mathrm{p}_{\mathrm{n}} \left(\mathrm{x}\right)+\mathrm{1}+\mathrm{nx}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} \right\}−\mathrm{1}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}−\mathrm{nx}^{\mathrm{2}} \\ $$ $$=\mathrm{p}_{\mathrm{n}} \left(\mathrm{x}\right)+\mathrm{1}+\mathrm{nx}+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}} \:+\mathrm{xp}_{\mathrm{n}} \left(\mathrm{x}\right)+\mathrm{x}+\mathrm{nx}^{\mathrm{2}} +\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{3}} −\mathrm{1}−\left(\mathrm{n}+\mathrm{1}\right)\mathrm{x}−\mathrm{nx}^{\mathrm{2}} \\ $$ $$=\left(\mathrm{1}+\mathrm{x}\right)\mathrm{p}_{\mathrm{n}} \left(\mathrm{x}\right)+\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{2}\:} +\left(\mathrm{n}−\mathrm{1}\right)\mathrm{x}^{\mathrm{3}} \geqslant\mathrm{0}\:\mathrm{due}\:\mathrm{to}\:\mathrm{p}_{\mathrm{n}} \geqslant\mathrm{0}\:\mathrm{and}\:\mathrm{n}−\mathrm{1}\geqslant\mathrm{1} \\ $$ $$ \\ $$

Commented bymathdanisur last updated on 19/Jul/21

thank you Ser

$${thank}\:{you}\:{Ser} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com