Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147122 by mathdanisur last updated on 18/Jul/21

lim_(n→∞)  Σ_(k=1) ^n 2^k ∙((2)^(1/2^k ) −1)^2  = ?

$$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\underset{\boldsymbol{{k}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\sum}}\mathrm{2}^{\boldsymbol{{k}}} \centerdot\left(\sqrt[{\mathrm{2}^{\boldsymbol{{k}}} }]{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} \:=\:?\: \\ $$

Answered by Kamel last updated on 18/Jul/21

Sorry you are right: (i′m consider ((√2))^(1/2^k ) )  S_n =Σ_(k=1) ^n 2^k ((2)^(1/2^k ) −1)^2 =Σ_(k=1) ^n 2^k (2^(1/2^(k−1) ) −2^((1/2^k )+1) +1)  =Σ_(k=1) ^n (2^(k+(1/2^(k−1) )) −2^((1/2^k )+k+1) )+2^(n+1) −1  =2^2 −2^((1/2^1 )+2) +2^((1/2)+2) −2^((1/2^2 )+3) +2^((1/2^2 )+3) −2^((1/2^3 )+4) ...−2^((1/2^n )+n+1) +2^(n+1) −2  =2−22^n (2^(1/2^n ) −1)  lim_(n→+∞) S_n =^(t=(1/2^n )) 2−2lim_(t→0^+ ) ((2^t −1)/t)=2−2Ln(2)                           ∴  lim_(n→+∞) Σ_(k=1) ^n 2^k ((2)^(1/2^k ) −1)^2 =2−2Ln(2)                                    KAMEL BENAICHA

$${Sorry}\:{you}\:{are}\:{right}:\:\left({i}'{m}\:{consider}\:\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}^{{k}} }} \right) \\ $$$${S}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left(\sqrt[{\mathrm{2}^{{k}} }]{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{k}−\mathrm{1}} }} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{k}} }+\mathrm{1}} +\mathrm{1}\right) \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\left(\mathrm{2}^{{k}+\frac{\mathrm{1}}{\mathrm{2}^{{k}−\mathrm{1}} }} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{k}} }+{k}+\mathrm{1}} \right)+\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{1} \\ $$$$=\mathrm{2}^{\mathrm{2}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{1}} }+\mathrm{2}} +\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{2}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\mathrm{3}} +\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+\mathrm{3}} −\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{3}} }+\mathrm{4}} ...−\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{n}} }+{n}+\mathrm{1}} +\mathrm{2}^{{n}+\mathrm{1}} −\mathrm{2} \\ $$$$=\mathrm{2}−\mathrm{22}^{{n}} \left(\mathrm{2}^{\frac{\mathrm{1}}{\mathrm{2}^{{n}} }} −\mathrm{1}\right) \\ $$$$\underset{{n}\rightarrow+\infty} {{lim}S}_{{n}} \overset{{t}=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }} {=}\mathrm{2}−\mathrm{2}\underset{{t}\rightarrow\mathrm{0}^{+} } {{lim}}\frac{\mathrm{2}^{{t}} −\mathrm{1}}{{t}}=\mathrm{2}−\mathrm{2}{Ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\therefore\:\underset{{n}\rightarrow+\infty} {\:{lim}}\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{2}^{{k}} \left(\sqrt[{\mathrm{2}^{{k}} }]{\mathrm{2}}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2}−\mathrm{2}{Ln}\left(\mathrm{2}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{KAMEL}}\:\boldsymbol{{BENAICHA}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com