Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 147166 by puissant last updated on 18/Jul/21

∫_R e^(ixt) e^(−t^2 ) dt..

$$\int_{\mathbb{R}} \mathrm{e}^{\mathrm{ixt}} \mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}.. \\ $$

Answered by mathmax by abdo last updated on 18/Jul/21

∫_(−∞) ^(+∞)  e^(−t^2 ) e^(ixt)  dt =∫_(−∞) ^(+∞)  e^(−(t^2 −ixt))  dt  =∫_(−∞) ^(+∞)  e^(−(t^2 −2((ix)/2)t −(x^2 /4)+(x^2 /4))) dt  =∫_(−∞) ^(+∞)  e^(−(t−((ix)/2))^2 ) e^(−(x^2 /4))  dt =_(t−((ix)/2)=z) e^(−(x^2 /4))   ∫_(−∞) ^(+∞) e^(−z^2 ) dz  =(√π)e^(−(x^2 /4))

$$\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{e}^{\mathrm{ixt}} \:\mathrm{dt}\:=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\left(\boldsymbol{\mathrm{t}}^{\mathrm{2}} −\boldsymbol{\mathrm{ixt}}\right)} \:\boldsymbol{\mathrm{dt}} \\ $$$$=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\left(\mathrm{t}^{\mathrm{2}} −\mathrm{2}\frac{\mathrm{ix}}{\mathrm{2}}\mathrm{t}\:−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}\right)} \mathrm{dt} \\ $$$$=\int_{−\infty} ^{+\infty} \:\mathrm{e}^{−\left(\mathrm{t}−\frac{\mathrm{ix}}{\mathrm{2}}\right)^{\mathrm{2}} } \mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}} \:\mathrm{dt}\:=_{\mathrm{t}−\frac{\mathrm{ix}}{\mathrm{2}}=\mathrm{z}} \mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}} \:\:\int_{−\infty} ^{+\infty} \mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz} \\ $$$$=\sqrt{\pi}\mathrm{e}^{−\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$

Commented by puissant last updated on 18/Jul/21

thanks

$$\mathrm{thanks} \\ $$

Commented by Kamel last updated on 18/Jul/21

it′s wrong to write t−((ix)/2)→+∞, this is a complex number.

$${it}'{s}\:{wrong}\:{to}\:{write}\:{t}−\frac{{ix}}{\mathrm{2}}\rightarrow+\infty,\:{this}\:{is}\:{a}\:{complex}\:{number}. \\ $$

Commented by mathmax by abdo last updated on 18/Jul/21

study first when a complex z go to ∞....

$$\mathrm{study}\:\mathrm{first}\:\mathrm{when}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{z}\:\mathrm{go}\:\mathrm{to}\:\infty.... \\ $$

Answered by Kamel last updated on 18/Jul/21

  Ω(x)=∫_R e^(ixt) e^(−t^2 ) dt=2∫_0 ^(+∞) cos(xt)e^(−t^2 ) dt  ∣cos(xt)e^(−t^2 ) ∣≤e^(−t^2 ) , ∣tsin(tx)e^(−t^2 ) ∣≤te^(−t^2 ) ,t→e^(−t^2 ) ,t→te^(−t^2 ) integrables in [0;+∞[.  Ω′(x)=−2∫_0 ^(+∞) tsin(xt)e^(−t^2 ) dt=−(1/2)xΩ(x)  ∴ ((Ω′(x))/(Ω(x)))=−(1/2)x⇒Ln∣Ω(x)∣=−(x^2 /4)+c/c∈R.  ∴ Ω(x)=Ae^(−(x^2 /4)) , Ω(0)=2∫_0 ^(+∞) e^(−t^2 ) dt=(√π)       ∴   Ω(x)=∫_R e^(ixt) e^(−t^2 ) dt=(√π)e^(−(x^2 /4))

$$ \\ $$$$\Omega\left({x}\right)=\int_{\mathbb{R}} {e}^{{ixt}} {e}^{−{t}^{\mathrm{2}} } {dt}=\mathrm{2}\int_{\mathrm{0}} ^{+\infty} {cos}\left({xt}\right){e}^{−{t}^{\mathrm{2}} } {dt} \\ $$$$\mid{cos}\left({xt}\right){e}^{−{t}^{\mathrm{2}} } \mid\leqslant{e}^{−{t}^{\mathrm{2}} } ,\:\mid{tsin}\left({tx}\right){e}^{−{t}^{\mathrm{2}} } \mid\leqslant{te}^{−{t}^{\mathrm{2}} } ,{t}\rightarrow{e}^{−{t}^{\mathrm{2}} } ,{t}\rightarrow{te}^{−{t}^{\mathrm{2}} } {integrables}\:{in}\:\left[\mathrm{0};+\infty\left[.\right.\right. \\ $$$$\Omega'\left({x}\right)=−\mathrm{2}\int_{\mathrm{0}} ^{+\infty} {tsin}\left({xt}\right){e}^{−{t}^{\mathrm{2}} } {dt}=−\frac{\mathrm{1}}{\mathrm{2}}{x}\Omega\left({x}\right) \\ $$$$\therefore\:\frac{\Omega'\left({x}\right)}{\Omega\left({x}\right)}=−\frac{\mathrm{1}}{\mathrm{2}}{x}\Rightarrow{Ln}\mid\Omega\left({x}\right)\mid=−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+{c}/{c}\in\mathbb{R}. \\ $$$$\therefore\:\Omega\left({x}\right)={Ae}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} ,\:\Omega\left(\mathrm{0}\right)=\mathrm{2}\int_{\mathrm{0}} ^{+\infty} {e}^{−{t}^{\mathrm{2}} } {dt}=\sqrt{\pi} \\ $$$$\:\:\:\:\:\therefore\:\:\:\Omega\left({x}\right)=\int_{\mathbb{R}} {e}^{{ixt}} {e}^{−{t}^{\mathrm{2}} } {dt}=\sqrt{\pi}{e}^{−\frac{{x}^{\mathrm{2}} }{\mathrm{4}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com