Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 147195 by mnjuly1970 last updated on 18/Jul/21

              Ω := ∫_0 ^( 1) Li_( 2) ( (√x) )dx = ?

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Omega\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \mathrm{Li}_{\:\mathrm{2}} \left(\:\sqrt{{x}}\:\right){dx}\:=\:? \\ $$$$ \\ $$

Answered by Olaf_Thorendsen last updated on 18/Jul/21

  Ω = ∫_0 ^1 Li_2 ((√x)) dx  Ω = ∫_0 ^1 Σ_(k=1) ^∞ ((((√x))^k )/k^2 ) dx  Ω = ∫_0 ^1 Σ_(k=1) ^∞ (x^(k/2) /k^2 ) dx  Ω = [Σ_(k=1) ^∞ (x^((k/2)+1) /(k^2 ((k/2)+1)))]_0 ^1   Ω = Σ_(k=1) ^∞ (1/(k^2 ((k/2)+1)))  Ω = 2Σ_(k=1) ^∞ (1/(k^2 (k+2)))  Ω = Σ_(k=1) ^∞ ((1/k^2 )−(1/2).(1/k)+(1/2).(1/(k+2)))  Ω = Σ_(k=1) ^∞ (1/k^2 )−(1/2)Σ_(k=1) ^∞ ((1/k)−(1/(k+2)))  Ω = (π^2 /6)−(1/2)(1+(1/2))  Ω = (π^2 /6)−(3/4)

$$ \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{Li}_{\mathrm{2}} \left(\sqrt{{x}}\right)\:{dx} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(\sqrt{{x}}\right)^{{k}} }{{k}^{\mathrm{2}} }\:{dx} \\ $$$$\Omega\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\frac{{k}}{\mathrm{2}}} }{{k}^{\mathrm{2}} }\:{dx} \\ $$$$\Omega\:=\:\left[\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{\frac{{k}}{\mathrm{2}}+\mathrm{1}} }{{k}^{\mathrm{2}} \left(\frac{{k}}{\mathrm{2}}+\mathrm{1}\right)}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left(\frac{{k}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\Omega\:=\:\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} \left({k}+\mathrm{2}\right)} \\ $$$$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{k}}+\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{1}}{{k}+\mathrm{2}}\right) \\ $$$$\Omega\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{2}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{k}}−\frac{\mathrm{1}}{{k}+\mathrm{2}}\right) \\ $$$$\Omega\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Omega\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 19/Jul/21

     mercey −thanks alot master     olaf ....

$$\:\:\:\:\:{mercey}\:−{thanks}\:{alot}\:{master} \\ $$$$\:\:\:{olaf}\:.... \\ $$

Answered by Kamel last updated on 18/Jul/21

=^(t=(√x)) 2∫_0 ^1 tLi_2 (t)dt=(π^2 /6)+∫_0 ^1 tLn(1−t)dt    =(π^2 /6)−(1/2)∫_0 ^1 (1+t)dt=(π^2 /6)−(1/2)(1+(1/2))  ∴  ∫_0 ^1 Li_2 ((√x))dx=(π^2 /6)−(3/4)

$$\overset{{t}=\sqrt{{x}}} {=}\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {tLi}_{\mathrm{2}} \left({t}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}+\int_{\mathrm{0}} ^{\mathrm{1}} {tLn}\left(\mathrm{1}−{t}\right){dt} \\ $$$$\:\:=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{t}\right){dt}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\therefore\:\:\int_{\mathrm{0}} ^{\mathrm{1}} {Li}_{\mathrm{2}} \left(\sqrt{{x}}\right){dx}=\frac{\pi^{\mathrm{2}} }{\mathrm{6}}−\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Commented by mnjuly1970 last updated on 19/Jul/21

thank you so much mr kamel..

$${thank}\:{you}\:{so}\:{much}\:{mr}\:{kamel}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com