Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 147205 by mathmax by abdo last updated on 18/Jul/21

calculate ∫_1 ^∞  ((arctan((3/x)))/(2x^2  +1))dx

calculate1arctan(3x)2x2+1dx

Answered by mathmax by abdo last updated on 20/Jul/21

Ψ=∫_1 ^∞  ((arctan((3/x)))/(2x^2  +1))dx ⇒Ψ=∫_1 ^∞  (((π/2)−arcan((x/3)))/(2x^2  +1))dx  =(π/2)∫_1 ^∞  (dx/(2x^2  +1))−∫_1 ^∞  ((arctan((x/3)))/(2x^2  +1))dx =(π/2)I−J  I=(1/2)∫_1 ^∞  (dx/(x^2  +(1/2))) =_(x=(1/( (√2)))y)   (1/2)∫_(√2) ^∞  (dy/( (√2)×(1/2)(1+y^2 )))  =(1/( (√2)))[arctany]_(√2) ^∞  =(1/( (√2)))((π/2) −arctan((√2)))  we consider f(a)=∫_1 ^∞  ((arctan(ax))/(2x^2  +1))dx     (o<a<1)  f^′ (a)=∫_1 ^∞  (x/((1+a^2 x^2 )(2x^2  +1)))dx  =_(ax=y)     ∫_a ^∞  (dy/(a(1+y^2 )(2(y^2 /a^2 ) +1)))=∫_a ^∞   ((a^2 dy)/(a(y^2 +1)(2y^2  +a^2 )))  =a∫_a ^∞  (dy/((y^2  +1)(2y^2  +a^2 )))=2a∫_a ^∞  (dy/((2y^2 +2)(2y^2  +a^2 )))  =((2a)/(a^2 −2)) ∫_a ^∞ ((1/(2y^2 +2))−(1/(2y^2 +a^2 )))dy  =(a/(a^2 −2))∫_a ^∞  (dy/(y^2  +1))−(a/(a^2 −2))∫_a ^∞  (dy/(y^2  +(a^2 /2)))(→y=(a/( (√2)))z)  =(a/(a^2 −2))((π/2)−arctana)−(a/(a^2 −2)).(a/( (√2)))∫_(√2) ^∞  (dz/((a^2 /2)(1+z^2 )))  =(a/(a^2 −2))((π/2)−arctana)−((√2)/(a^2 −2))((π/2)−arctan((√2))) ⇒  f(a)=∫ {(a/(a^2 −2))((π/2)−arctana)−((√2)/(a^2 −2))((π/2)−arctan(√2))}da  ....be continued...

Ψ=1arctan(3x)2x2+1dxΨ=1π2arcan(x3)2x2+1dx=π21dx2x2+11arctan(x3)2x2+1dx=π2IJI=121dxx2+12=x=12y122dy2×12(1+y2)=12[arctany]2=12(π2arctan(2))weconsiderf(a)=1arctan(ax)2x2+1dx(o<a<1)f(a)=1x(1+a2x2)(2x2+1)dx=ax=yadya(1+y2)(2y2a2+1)=aa2dya(y2+1)(2y2+a2)=aady(y2+1)(2y2+a2)=2aady(2y2+2)(2y2+a2)=2aa22a(12y2+212y2+a2)dy=aa22adyy2+1aa22adyy2+a22(y=a2z)=aa22(π2arctana)aa22.a22dza22(1+z2)=aa22(π2arctana)2a22(π2arctan(2))f(a)={aa22(π2arctana)2a22(π2arctan2)}da....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com