All Questions Topic List
Relation and Functions Questions
Previous in All Question Next in All Question
Previous in Relation and Functions Next in Relation and Functions
Question Number 147205 by mathmax by abdo last updated on 18/Jul/21
calculate∫1∞arctan(3x)2x2+1dx
Answered by mathmax by abdo last updated on 20/Jul/21
Ψ=∫1∞arctan(3x)2x2+1dx⇒Ψ=∫1∞π2−arcan(x3)2x2+1dx=π2∫1∞dx2x2+1−∫1∞arctan(x3)2x2+1dx=π2I−JI=12∫1∞dxx2+12=x=12y12∫2∞dy2×12(1+y2)=12[arctany]2∞=12(π2−arctan(2))weconsiderf(a)=∫1∞arctan(ax)2x2+1dx(o<a<1)f′(a)=∫1∞x(1+a2x2)(2x2+1)dx=ax=y∫a∞dya(1+y2)(2y2a2+1)=∫a∞a2dya(y2+1)(2y2+a2)=a∫a∞dy(y2+1)(2y2+a2)=2a∫a∞dy(2y2+2)(2y2+a2)=2aa2−2∫a∞(12y2+2−12y2+a2)dy=aa2−2∫a∞dyy2+1−aa2−2∫a∞dyy2+a22(→y=a2z)=aa2−2(π2−arctana)−aa2−2.a2∫2∞dza22(1+z2)=aa2−2(π2−arctana)−2a2−2(π2−arctan(2))⇒f(a)=∫{aa2−2(π2−arctana)−2a2−2(π2−arctan2)}da....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com