Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 147209 by alcohol last updated on 18/Jul/21

Commented by Ar Brandon last updated on 19/Jul/21

1.∫_(−a) ^a f(x)dx=∫_(−a) ^0 f(x)dx+∫_0 ^a f(x)dx  Pour ∫_(−a) ^0 f(x)dx, posons u=−x ⇒du=−dx  ⇒∫_(−a) ^0 f(x)dx=−∫_a ^0 f(−u)du=∫_0 ^a f(−u)du=∫_0 ^a f(u)du  ⇒∫_(−a) ^a f(x)dx=∫_0 ^a f(x)dx+∫_0 ^a f(x)dx=2∫_0 ^a f(x)dx  2. A_n (F)=(1/π)∫_(−π) ^π F(x)sin(nx)dx  F(x) impaire , sin(nx) impaire ⇒F(x)sin(x) paire  ⇒A_n (F)=(1/π)∫_(−π) ^π F(x)sin(nx)dx=(2/π)∫_0 ^π F(x)sin(nx)dx  ⇒A_n (F)=(2/π)[∫_0 ^(π/2) xsin(nx)dx+∫_(π/2) ^π (π−x)sin(nx)dx]  Pour ∫_(π/2) ^π (π−x)sin(nx)dx, u=π−x ⇒du=−dx  ⇒∫_(π/2) ^π (π−x)sin(nx)dx=∫_0 ^(π/2) usin(nπ−nu))du  = { ((∫_0 ^(π/2) usin(−nu)du si n pair)),((∫_0 ^(π/2) usin(nu)du si n impair)) :}=(−1)^(n+1) ∫_0 ^(π/2) usin(nu)du     ⇒A_n (F)=(2/π)[∫_0 ^(π/2) xsin(nx)dx+(−1)^(n+1) ∫_0 ^(π/2) xsin(nx)dx]                     =(2/π)(1−(−1)^n )∫_0 ^(π/2) xsin(nx)dx  3. A_(2n) (F)=(2/π)(1−(−1)^(2n) )∫_0 ^(π/2) xsin(nx)dx= determinant ((0)), (−1)^(2n) =(1)^n =1  4. A_(2n+1) (F)=(2/π)(1−(−1)^(2n+1) )∫_0 ^(π/2) xsin((2n+1)x)dx                          =(4/π)∫_0 ^(π/2) xsin((2n+1)x)dx   { ((u(x)=x)),((v′(x)=sin((2n+1)x))) :} ⇒ { ((u′(x)=1)),((v(x)=−((cos((2n+1)x))/(2n+1)))) :}  A_(2n+1) (F)=(4/π)[−((xcos((2n+1)x))/(2n+1))+(1/(2n+1))∫cos((2n+1)x)dx]_0 ^(π/2)                       =(4/π)∙(1/((2n+1)))∫_0 ^(π/2) cos((2n+1)x)dx                      =(4/π)∙(1/((2n+1)^2 ))[sin((2n+1)x)]_0 ^(π/2) =((4(−1)^n )/(π(2n+1)^2 ))     5. F(x)=Σ_(n=0) ^(+∞) A_n (F)sin(nx)                 =A_0 (F)sin(0)+A_1 (F)sin(x)+A_2 (F)sin(2x)+∙∙∙  A_0 (F)=0, A_2 (F)=0, A_(2n) (F)=0  ⇒F(x)=Σ_(n=0) ^(+∞) A_(2n+1) (F)sin((2n+1)x)                 =Σ_(n=0) ^(+∞) ((4(−1)^n )/(π(2n+1)^2 ))sin((2n+1)x)  Or F(x)= { ((x si 0≤x<(π/2))),((π−x si (π/2)≤x≤π)) :}  Prenons F(x)=π−x  ⇒π−x=Σ_(n=0) ^(+∞) ((4(−1)^n )/(π(2n+1)^2 ))sin((2n+1)x)  Posons x=(π/2)  ⇒(π/2)=Σ_(n=0) ^(+∞) ((4(−1)^n )/(π(2n+1)^2 ))sin((2n+1)(π/2))=Σ_(n=0) ^(+∞) ((4(−1)^n ×(−1)^n )/(π(2n+1)^2 ))  ⇒Σ_(n=0) ^(+∞) (1/((2n+1)^2 ))=(π^2 /8)  b. Σ_(n=1) ^(+∞) (1/n^2 )=1+(1/2^2 )+(1/3^2 )+∙∙∙=(1+(1/3^2 )+∙∙∙)+(1/2^2 )(1+(1/2^2 )+(1/3^2 )+∙∙∙)                           =Σ_(n=0) ^(+∞) (1/((2n+1)^2 ))+(1/2^2 )Σ_(n=1) ^(+∞) (1/n^2 )  ⇒Σ_(n=1) ^(+∞) (1/n^2 )=(4/3)Σ_(n=0) ^(+∞) (1/((2n+1)^2 ))=(4/3)×(π^2 /8)=(π^2 /6)  Σ_(n=1) ^(+∞) (((−1)^(n−1) )/n^2 )=1−(1/2^2 )+(1/3^2 )−(1/4^2 )+∙∙∙               =(1+(1/3^2 )+∙∙∙)−(1/2^2 )(1+(1/2^2 )+∙∙∙)=(π^2 /8)−(1/4)((π^2 /6))=(π^2 /(12))

1.aaf(x)dx=a0f(x)dx+0af(x)dxPoura0f(x)dx,posonsu=xdu=dxa0f(x)dx=a0f(u)du=0af(u)du=0af(u)duaaf(x)dx=0af(x)dx+0af(x)dx=20af(x)dx2.An(F)=1πππF(x)sin(nx)dxF(x)impaire,sin(nx)impaireF(x)sin(x)paireAn(F)=1πππF(x)sin(nx)dx=2π0πF(x)sin(nx)dxAn(F)=2π[0π2xsin(nx)dx+π2π(πx)sin(nx)dx]Pourπ2π(πx)sin(nx)dx,u=πxdu=dxπ2π(πx)sin(nx)dx=0π2usin(nπnu))du={0π2usin(nu)dusinpair0π2usin(nu)dusinimpair=(1)n+10π2usin(nu)duAn(F)=2π[0π2xsin(nx)dx+(1)n+10π2xsin(nx)dx]=2π(1(1)n)0π2xsin(nx)dx3.A2n(F)=2π(1(1)2n)0π2xsin(nx)dx=0,(1)2n=(1)n=14.A2n+1(F)=2π(1(1)2n+1)0π2xsin((2n+1)x)dx=4π0π2xsin((2n+1)x)dx{u(x)=xv(x)=sin((2n+1)x){u(x)=1v(x)=cos((2n+1)x)2n+1A2n+1(F)=4π[xcos((2n+1)x)2n+1+12n+1cos((2n+1)x)dx]0π2=4π1(2n+1)0π2cos((2n+1)x)dx=4π1(2n+1)2[sin((2n+1)x)]0π2=4(1)nπ(2n+1)25.F(x)=n=0+An(F)sin(nx)=A0(F)sin(0)+A1(F)sin(x)+A2(F)sin(2x)+A0(F)=0,A2(F)=0,A2n(F)=0F(x)=n=0+A2n+1(F)sin((2n+1)x)=n=0+4(1)nπ(2n+1)2sin((2n+1)x)OrF(x)={xsi0x<π2πxsiπ2xπPrenonsF(x)=πxπx=n=0+4(1)nπ(2n+1)2sin((2n+1)x)Posonsx=π2π2=n=0+4(1)nπ(2n+1)2sin((2n+1)π2)=n=0+4(1)n×(1)nπ(2n+1)2n=0+1(2n+1)2=π28b.n=1+1n2=1+122+132+=(1+132+)+122(1+122+132+)=n=0+1(2n+1)2+122n=1+1n2n=1+1n2=43n=0+1(2n+1)2=43×π28=π26n=1+(1)n1n2=1122+132142+=(1+132+)122(1+122+)=π2814(π26)=π212

Answered by puissant last updated on 19/Jul/21

5)   a)         F(x)=Σ_(n=0) ^∞ A_n (F) sin(nx)  F(x)=Σ_(n=0) ^∞ A_(2n+1) (F) sin((2n+1)x)  ⇒F(x)=Σ_(n=0) ^∞ ((4(−1)^n )/(π(2n+1)^2 )) sin((2n+1)x)  posons F(x)=π−x  ⇒ π−x=Σ_(n=0) ^∞ ((4(−1)^n )/(π(2n+1)^2 )) sin((2n+1)x)  posons  x=(π/2)..  ⇒(π/2)=Σ_(n=0) ^∞ ((4(−1)^n )/(π(2n+1)^2 )) sin((2n+1)(π/2))  sin((2n+1)(π/2))=(−1)^n  ; ∀ n ∈ N  ⇒(π/2)=(4/π)Σ_(n=0) ^∞ (((−1)^(2n) )/((2n+1)^2 ))  soit  Σ_(n=0) ^∞ (1/((2n+1)^2 ))=(π^2 /8)...  b)  Σ_(n=1) ^∞ (1/n^2 )=1+(1/2^2 )+(1/3^2 )+(1/4^2 )+(1/5^2 )+........  =(1+(1/3^2 )+(1/5^2 )+....)+(1/2^2 )(1+(1/2^2 )+(1/4^2 )+.....)  ⇒ Σ_(n=0) ^∞ (1/n^2 )=Σ_(n=0) ^∞ (1/((2n+1)^2 ))+(1/4)Σ_(n=0) ^∞ (1/n^2 )  ⇒(3/4)Σ_(n=0) ^∞ (1/n^2 )=Σ_(n=0) ^∞ (1/((2n+1)^2 ))=(π^2 /8)  ⇒Σ_(n=0) ^∞ (1/n^2 )=(4/3)×(π^2 /8)  soit Σ_(n=0) ^∞ (1/n^2 ) = (π^2 /6)...  c)  Σ_(n=0) ^∞ (((−1)^(n−1) )/n^2 ) = 1−(1/2^2 )+(1/3^2 )−(1/4^2 )+......  =(1+(1/3^2 )+(1/5^2 )+....)−(1/2^2 )(1+(1/2^2 )+(1/4^2 )+....)  =(π^2 /8)−(1/4)×(π^2 /6) = (π^2 /8)−(π^2 /(24)) = (π^2 /(12))..  soit Σ_(n=0) ^∞ (((−1)^(n−1) )/n^2 ) = (π^2 /(12))....

5)a)F(x)=n=0An(F)sin(nx)F(x)=n=0A2n+1(F)sin((2n+1)x)F(x)=n=04(1)nπ(2n+1)2sin((2n+1)x)posonsF(x)=πxπx=n=04(1)nπ(2n+1)2sin((2n+1)x)posonsx=π2..π2=n=04(1)nπ(2n+1)2sin((2n+1)π2)sin((2n+1)π2)=(1)n;nNπ2=4πn=0(1)2n(2n+1)2soitn=01(2n+1)2=π28...b)n=11n2=1+122+132+142+152+........=(1+132+152+....)+122(1+122+142+.....)n=01n2=n=01(2n+1)2+14n=01n234n=01n2=n=01(2n+1)2=π28n=01n2=43×π28soitn=01n2=π26...c)n=0(1)n1n2=1122+132142+......=(1+132+152+....)122(1+122+142+....)=π2814×π26=π28π224=π212..soitn=0(1)n1n2=π212....

Commented by alcohol last updated on 19/Jul/21

merci   la 1,2,3,4 pardon

mercila1,2,3,4pardon

Answered by puissant last updated on 19/Jul/21

1)  ∫_(−a) ^a f(x)dx=∫_(−a) ^0 f(x)dx+∫_0 ^( a) f(x)dx  pour ∫_(−a) ^( 0) f(x)dx , posons   t=−x ⇒ dt=−dx  ⇒∫_(−a) ^( 0) f(x)dx=∫_0 ^( a) f(−t)dt=∫_0 ^( a) f(x)dx   car la fonction est paire et les vaiables sont muettes..  ⇒∫_(−a) ^( a) f(x)dx=∫_0 ^( a) f(x)dx+∫_0 ^( a) f(x)dx=2∫_0 ^( a) f(x)dx..  2)  A_n (F)=(1/π)∫_(−π) ^( π) F(x)sin(nx)dx  F(x) est impair et sin(nx) est impair donc   F(x)sin(nx) est paire, ainsi on a:  A_n (F)=(2/π)∫_0 ^( π) F(x)sin(nx)dx  ⇒ A_n (F)=(2/π)∫_0 ^( (π/2)) xsin(nx)dx+(2/π)∫_(π/2) ^( π) (π−x)sin(nx)dx  disons Q=∫_(π/2) ^( π) (π−x)sin(nx)dx  posons  u=π−x ⇒ du=−dx  Q=−∫_(π/2) ^( 0) usin(nπ−nu)du=∫_0 ^( (π/2)) usin(nπ−nu)du  →si  n paire,  Q=∫_0 ^(π/2) usin(−nu)du  → si  n impaire,  Q=∫_0 ^(π/2) usin(nu)du  d′ou  Q=(−1)^(n+1) ∫_0 ^(π/2) usin(nu)du  A_n (F)=(2/π)(∫_0 ^(π/2) xsin(nx)dx+(−1)^(n+1) ∫_0 ^(π/2) xsin(nx)dx)  soit  A_n (F)=(2/π)(1−(−1)^n )∫_0 ^(π/2) xsin(nx)dx...  3)  A_(2n) (F)=(2/π)(1−(−1)^(2n) )∫_0 ^(π/2) xsin(nx)dx=0  car 1−(−1)^(2n) =1−1=0..  4)  A_(2n+1) (F)=(2/π)(1−(−1)^(2n+1) )∫_0 ^(π/2) xsin((2n+1)x)dx  =(4/π)∫_0 ^(π/2) xsin((2n+1)x)dx  alors, posons  { ((u=x)),((v′=sin((2n+1)x))) :}⇒ { ((u′=1)),((v=−(1/(2n+1))cos((2n+1)x))) :}  A_(2n+1) (F)=(4/π)[−(x/(2n+1))cos((2n+1)x)]_0 ^(π/2) +(4/(π(2n+1)))∫_0 ^( (π/2)) cos((2n+1)x)dx  =(4/(π(2n+1)))∫_0 ^( (π/2)) cos((2n+1)x)dx  =(4/(π(2n+1)^2 ))[sin((2n+1)x)]_0 ^(π/2)   =((4(−1)^n )/(π(2n+1)^2 ))..   car  sin((2n+1)(π/2))=(−1)^n

1)aaf(x)dx=a0f(x)dx+0af(x)dxpoura0f(x)dx,posonst=xdt=dxa0f(x)dx=0af(t)dt=0af(x)dxcarlafonctionestpaireetlesvaiablessontmuettes..aaf(x)dx=0af(x)dx+0af(x)dx=20af(x)dx..2)An(F)=1πππF(x)sin(nx)dxF(x)estimpairetsin(nx)estimpairdoncF(x)sin(nx)estpaire,ainsiona:An(F)=2π0πF(x)sin(nx)dxAn(F)=2π0π2xsin(nx)dx+2ππ2π(πx)sin(nx)dxdisonsQ=π2π(πx)sin(nx)dxposonsu=πxdu=dxQ=π20usin(nπnu)du=0π2usin(nπnu)dusinpaire,Q=0π2usin(nu)dusinimpaire,Q=0π2usin(nu)dudouQ=(1)n+10π2usin(nu)duAn(F)=2π(0π2xsin(nx)dx+(1)n+10π2xsin(nx)dx)soitAn(F)=2π(1(1)n)0π2xsin(nx)dx...3)A2n(F)=2π(1(1)2n)0π2xsin(nx)dx=0car1(1)2n=11=0..4)A2n+1(F)=2π(1(1)2n+1)0π2xsin((2n+1)x)dx=4π0π2xsin((2n+1)x)dxalors,posons{u=xv=sin((2n+1)x){u=1v=12n+1cos((2n+1)x)A2n+1(F)=4π[x2n+1cos((2n+1)x)]0π2+4π(2n+1)0π2cos((2n+1)x)dx=4π(2n+1)0π2cos((2n+1)x)dx=4π(2n+1)2[sin((2n+1)x)]0π2=4(1)nπ(2n+1)2..carsin((2n+1)π2)=(1)n

Terms of Service

Privacy Policy

Contact: info@tinkutara.com