All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 147254 by Ar Brandon last updated on 19/Jul/21
Soienta∈]0,1[etb∈R.SoitfuneapplicationdeRdanslui−meme^,declasseC1,tellequepourtoutreel´x,f(f(x))=ax+b.1.Montrerquepourtoutreel´x,f(ax+b)=af(x)+b.Endeduire´quepourtoutreel´x,f′(ax+b)=f′(x).2.Soit(un)n∈Nunesuitereelle´tellequepourtoutn∈N,un+1=aun+b.Montrerqueunestconvergentedelimitel=b1−a3.Montrerquef′estconstante.Endeduire´l′expressiondef.4.Quefairesia∈]1,+∞[?
Answered by ArielVyny last updated on 19/Jul/21
1)onaf(f(x))=ax+bx∈Rsoitx∈Rtelquef(x)==→f(0)=bonposey∈Rtelquef(y)=ax+bdoncilexistef−1telquey=f−1(ax+b)onassimilealorsl′applicationaunendomorphismeisomorpheparconsequentfestlineaire∀x∈R(a,b)∈((]0;1[),R)f(ax+b)=f(ax)+f(b)orf(0)=b→f(f(0))=f(b)=bonvoitaveclalinearitedefquef(ax)=af(x)conclusionf(ax+b)=af(x)+bendeduisonsquef′(ax+b)=f′(x)sachantquefestdeclasseC1etdelaqueationprecedenteona:f′(ax+b)=af′(ax+b)=af′(x)conclusionf′(ax+b)=f′(x)2)onaUn+1=aUn+b∀n∈NMtqUnconvergeversl=b1−aposonsf(ax+b)=Un+1etf(x)=UnsiUnconverveverslalorsUn+1convergeaussidonconf(ax+b)∼∞f(x)orl′applicationestunendomorphismeisomorphealorsax+b∼x→ax+bx→1→a+bx→1(x→+∞)cequiestlogiquecaraestmajorepar1parconsequentonabienUnconvergeanteetlim(Un+1)=lim(aUn+b)enremplacantonal=al+b→l−al=b→l=b1−ad′oul=b1−aetUnconverge3)montronsquef′estconstanteonsaitquef(f(x))=ax+benderivantchaquemembredel′egaliteonaf′(x)f′(f(x))=bcetteegaliten′addsensquesif′(x)f′(f(x))=ctecarb=ctedonciln′estclairquef′(x)dependedexdonclefaitquef′(x)soitconstantestineluctabledanscecasconclusionf′(x)=cte
Terms of Service
Privacy Policy
Contact: info@tinkutara.com