Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 147262 by mnjuly1970 last updated on 19/Jul/21

                       ...#  Calculus #...                   I := ∫_0 ^( 1) Li_( 2)  (x^( 2) ) dx = ?

You can't use 'macro parameter character #' in math modeI:=01Li2(x2)dx=?

Answered by qaz last updated on 19/Jul/21

∫_0 ^1 Li_2 (x^2 )dx  =xLi_2 (x^2 )∣_0 ^1 +2∫_0 ^1 ln(1−x^2 )dx  =(π^2 /6)+2∫_0 ^1 (lnx+ln(1+x))dx  =(π^2 /6)−4+4ln2  −−−−−−−−−−−  ∫_0 ^1 Li_2 (x^2 )dx  =−∫_0 ^1 ∫_0 ^x^2  ((ln(1−t))/t)dtdx  =−x∫_0 ^x^2  ((ln(1−t))/t)dt∣_0 ^1 +∫_0 ^1 x∙2x((ln(1−x^2 ))/x^2 )dx  =(π^2 /6)+2∫_0 ^1 ln(1−x^2 )dt  =(π^2 /6)+2∫_0 ^1 (ln(1−x)+ln(1+x))dx  =(π^2 /6)−4+4ln2

01Li2(x2)dx=xLi2(x2)01+201ln(1x2)dx=π26+201(lnx+ln(1+x))dx=π264+4ln201Li2(x2)dx=010x2ln(1t)tdtdx=x0x2ln(1t)tdt01+01x2xln(1x2)x2dx=π26+201ln(1x2)dt=π26+201(ln(1x)+ln(1+x))dx=π264+4ln2

Commented by mnjuly1970 last updated on 19/Jul/21

  thanks alot sir qaz...very nice...

thanksalotsirqaz...verynice...

Answered by Olaf_Thorendsen last updated on 19/Jul/21

I = ∫_0 ^1 Li_2 (x^2 )dx  I = ∫_0 ^( 1) Σ_(k=1) ^∞ (((x^2 )^k )/k^2 ) dx  I = ∫_0 ^( 1) Σ_(k=1) ^∞ (x^(2k) /k^2 ) dx  I = [Σ_(k=1) ^∞ (x^(2k+1) /(k^2 (2k+1)))]_0 ^1   I = Σ_(k=1) ^∞ (1/(k^2 (2k+1)))  I = (1/2)Σ_(k=1) ^∞ (1/(k^2 (k+(1/2))))  I = Σ_(k=1) ^∞ ((1/k^2 )−(1/(k(k+(1/2)))))  I = Σ_(k=1) ^∞ (1/k^2 )−Σ_(k=0) ^∞ (1/((k+1)(k+(3/2))))  I = (π^2 /6)−((ψ((3/2))−ψ(1))/((3/2)−1))  ψ(1) = −γ and ψ((1/2)) = −2ln2−γ  ψ(z+1) = ψ(z)+(1/z)  ⇒ ψ((3/2)) = ψ((1/2))+2 = −2ln2−γ+2  I = (π^2 /6)−((−2ln2−γ+2+γ)/(1/2))  I = (π^2 /6)+4ln2−4

I=01Li2(x2)dxI=01k=1(x2)kk2dxI=01k=1x2kk2dxI=[k=1x2k+1k2(2k+1)]01I=k=11k2(2k+1)I=12k=11k2(k+12)I=k=1(1k21k(k+12))I=k=11k2k=01(k+1)(k+32)I=π26ψ(32)ψ(1)321ψ(1)=γandψ(12)=2ln2γψ(z+1)=ψ(z)+1zψ(32)=ψ(12)+2=2ln2γ+2I=π262ln2γ+2+γ12I=π26+4ln24

Commented by mnjuly1970 last updated on 19/Jul/21

   grateful sir olaf..excellent...

gratefulsirolaf..excellent...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com