Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147322 by Gbenga last updated on 19/Jul/21

Commented by Mrsof last updated on 19/Jul/21

I=∫_0 ^( ∞) ((cos(ax))/(x^2 +b^2 ))dx=_(x=z) 2I=∫_(−∞) ^( ∞) ((cos(az))/(z^2 +b^2 ))dz    2I=Re(∫_(−∞) ^( ∞) (e^(aiz) /((z−bi)(z+bi)))dz)    the function has a resideo of z=bi    Res(f,bi)=lim_(z→bi) (z−bi)×(e^(aiz) /((z−bi)(z+bi)))=(e^(−ab) /(2bi))    2I=2πi(Res(f,bi))⇒I=πi×(e^(−ab) /(2bi))=((πe^(−ab) )/(2b))    ⟨M.T⟩

I=0cos(ax)x2+b2dx=x=z2I=cos(az)z2+b2dz2I=Re(eaiz(zbi)(z+bi)dz)thefunctionhasaresideoofz=biRes(f,bi)=limzbi(zbi)×eaiz(zbi)(z+bi)=eab2bi2I=2πi(Res(f,bi))I=πi×eab2bi=πeab2bM.T

Commented by Gbenga last updated on 19/Jul/21

thanks

thanks

Commented by Mrsof last updated on 20/Jul/21

you are welcome

youarewelcome

Answered by qaz last updated on 20/Jul/21

∫_0 ^∞ ((L(cos (ax)))/(x^2 +b^2 ))dx  =∫_0 ^∞ (s/((x^2 +b^2 )(x^2 +s^2 )))dx  =(s/(s^2 −b^2 ))∫_0 ^∞ ((1/(x^2 +b^2 ))−(1/(x^2 +s^2 )))dx  =(π/(2b(s+b)))  ⇒ ∫_0 ^∞ ((cos (ax))/(x^2 +b^2 ))dx=L^(−1) ((π/(2b(s+b))))=(π/(2b))e^(−ba)

0L(cos(ax))x2+b2dx=0s(x2+b2)(x2+s2)dx=ss2b20(1x2+b21x2+s2)dx=π2b(s+b)0cos(ax)x2+b2dx=L1(π2b(s+b))=π2beba

Terms of Service

Privacy Policy

Contact: info@tinkutara.com