Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 147381 by puissant last updated on 20/Jul/21

On pose H_n (α)=Π_(k=1) ^(n−1) sin((α/(2n))+((kπ)/n))  a) montrer que ∀α≠0,   2^(n−1) H_n (α)=((sin((α/2)))/(sin((α/(2n)))))  b) Calculer lim_(α→0)  H_n (α)  c) De^� duire que ∀α≥2,   sin((π/n))×sin(((2π)/n))×....×sin((((n−1)π)/n))=(π/2^(n−1) )..

$${On}\:{pose}\:{H}_{{n}} \left(\alpha\right)=\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}{sin}\left(\frac{\alpha}{\mathrm{2}{n}}+\frac{{k}\pi}{{n}}\right) \\ $$$$\left.{a}\right)\:{montrer}\:{que}\:\forall\alpha\neq\mathrm{0},\: \\ $$$$\mathrm{2}^{{n}−\mathrm{1}} {H}_{{n}} \left(\alpha\right)=\frac{{sin}\left(\frac{\alpha}{\mathrm{2}}\right)}{{sin}\left(\frac{\alpha}{\mathrm{2}{n}}\right)} \\ $$$$\left.{b}\right)\:{Calculer}\:{lim}_{\alpha\rightarrow\mathrm{0}} \:{H}_{{n}} \left(\alpha\right) \\ $$$$\left.{c}\right)\:{D}\acute {{e}duire}\:{que}\:\forall\alpha\geqslant\mathrm{2},\: \\ $$$${sin}\left(\frac{\pi}{{n}}\right)×{sin}\left(\frac{\mathrm{2}\pi}{{n}}\right)×....×{sin}\left(\frac{\left({n}−\mathrm{1}\right)\pi}{{n}}\right)=\frac{\pi}{\mathrm{2}^{{n}−\mathrm{1}} }.. \\ $$

Answered by Olaf_Thorendsen last updated on 20/Jul/21

a)  P(z) = z^n −e^(iα)   P(z_k ) = 0 ⇔ z_k  = e^(i((α/n)+((2kπ)/n))) , k = 0, 1..., n−1  P(z) = Π_(k=0) ^(n−1) (z−z_k )  P(z) = Π_(k=0) ^(n−1) (z−e^(i((α/n)+((2kπ)/n))) )  P(1) = 1−e^(iα)  = Π_(k=0) ^(n−1) (1−e^(i((α/n)+((2kπ)/n))) )  1−e^(iα)  = (1−e^(i(α/n)) )Π_(k=1) ^(n−1) (1−e^(i((α/n)+((2kπ)/n))) )  Π_(k=1) ^(n−1) (1−e^(i((α/n)+((2kπ)/n))) ) = ((1−e^(iα) )/(1−e^(i(α/n)) ))  C′est fastidieux mais il suffit de  factoriser partout par l′exponentielle  de la demi somme pour voir apparaitre  le resultat.  Par exemple 1−e^(iα)  est factorise en  e^(i(α/2)) (e^(−i(α/2)) −e^(i(α/2)) )... etc...

$$\left.{a}\right) \\ $$$$\mathrm{P}\left({z}\right)\:=\:{z}^{{n}} −{e}^{{i}\alpha} \\ $$$$\mathrm{P}\left({z}_{{k}} \right)\:=\:\mathrm{0}\:\Leftrightarrow\:{z}_{{k}} \:=\:{e}^{{i}\left(\frac{\alpha}{{n}}+\frac{\mathrm{2}{k}\pi}{{n}}\right)} ,\:{k}\:=\:\mathrm{0},\:\mathrm{1}...,\:{n}−\mathrm{1} \\ $$$$\mathrm{P}\left({z}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}−{z}_{{k}} \right) \\ $$$$\mathrm{P}\left({z}\right)\:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({z}−{e}^{{i}\left(\frac{\alpha}{{n}}+\frac{\mathrm{2}{k}\pi}{{n}}\right)} \right) \\ $$$$\mathrm{P}\left(\mathrm{1}\right)\:=\:\mathrm{1}−{e}^{{i}\alpha} \:=\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{{i}\left(\frac{\alpha}{{n}}+\frac{\mathrm{2}{k}\pi}{{n}}\right)} \right) \\ $$$$\mathrm{1}−{e}^{{i}\alpha} \:=\:\left(\mathrm{1}−{e}^{{i}\frac{\alpha}{{n}}} \right)\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{{i}\left(\frac{\alpha}{{n}}+\frac{\mathrm{2}{k}\pi}{{n}}\right)} \right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\prod}}\left(\mathrm{1}−{e}^{{i}\left(\frac{\alpha}{{n}}+\frac{\mathrm{2}{k}\pi}{{n}}\right)} \right)\:=\:\frac{\mathrm{1}−{e}^{{i}\alpha} }{\mathrm{1}−{e}^{{i}\frac{\alpha}{{n}}} } \\ $$$$\mathrm{C}'\mathrm{est}\:\mathrm{fastidieux}\:\mathrm{mais}\:\mathrm{il}\:\mathrm{suffit}\:\mathrm{de} \\ $$$$\mathrm{factoriser}\:\mathrm{partout}\:\mathrm{par}\:\mathrm{l}'\mathrm{exponentielle} \\ $$$$\mathrm{de}\:\mathrm{la}\:\mathrm{demi}\:\mathrm{somme}\:\mathrm{pour}\:\mathrm{voir}\:\mathrm{apparaitre} \\ $$$$\mathrm{le}\:\mathrm{resultat}. \\ $$$$\mathrm{Par}\:\mathrm{exemple}\:\mathrm{1}−{e}^{{i}\alpha} \:\mathrm{est}\:\mathrm{factorise}\:\mathrm{en} \\ $$$${e}^{{i}\frac{\alpha}{\mathrm{2}}} \left({e}^{−{i}\frac{\alpha}{\mathrm{2}}} −{e}^{{i}\frac{\alpha}{\mathrm{2}}} \right)...\:{etc}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com