Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 147405 by tabata last updated on 20/Jul/21

detirmine the residues f(z)=((cosz)/(z^2 (z−π)^3 ))

detirminetheresiduesf(z)=coszz2(zπ)3

Commented by Mrsof last updated on 20/Jul/21

???

???

Answered by mathmax by abdo last updated on 20/Jul/21

f(z)=((cosz)/(z^2 (z−π)^3 ))  the poles are o and π  Res(f,0)=lim_(z→0)   (1/((2−1)!)){z^2 f(z)}^((1))   =lim_(z→o)    {((cosz)/((z−π)^3 ))}^((1))  =lim_(z→0)   ((−sinz(z−π)^3 −3(z−π)^2 cosz)/((z−π)^6 ))  =lim_(z→0)     ((−sinz(z−π)−3cosz)/((z−π)^4 ))=((−3)/π^4 )  Res(f,π)=lim_(z→π)   (1/((3−1)!)){(z−π)^3 f(z)}^((2))   =(1/2)lim_(z→π) {((cosz)/z^2 )}^((2))  =(1/2)lim_(z→π)   {((−z^2 sinz−2zcosz)/z^4 )}^((1))   =−(1/2)lim_(z→π)   {((zsinz+2cosz)/z^3 )}^((1))   =−(1/2)lim_(z→π)    (((sinz+zcosz−2sinz)z^3 −3z^2 (zsinz+2cosz))/z^6 )  =−(1/2)lim_(z→π)    (((zcosz−sinz)z−3(zsinz+2cosz))/z^4 )  =−(1/2)×(((−π)π−3(−2))/π^4 )=−(1/2)×((−π^2 +6)/π^4 )  =((π^2 −6)/(2π^4 ))

f(z)=coszz2(zπ)3thepolesareoandπRes(f,0)=limz01(21)!{z2f(z)}(1)=limzo{cosz(zπ)3}(1)=limz0sinz(zπ)33(zπ)2cosz(zπ)6=limz0sinz(zπ)3cosz(zπ)4=3π4Res(f,π)=limzπ1(31)!{(zπ)3f(z)}(2)=12limzπ{coszz2}(2)=12limzπ{z2sinz2zcoszz4}(1)=12limzπ{zsinz+2coszz3}(1)=12limzπ(sinz+zcosz2sinz)z33z2(zsinz+2cosz)z6=12limzπ(zcoszsinz)z3(zsinz+2cosz)z4=12×(π)π3(2)π4=12×π2+6π4=π262π4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com