Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 147411 by mnjuly1970 last updated on 20/Jul/21

Answered by mnjuly1970 last updated on 20/Jul/21

               :=^((√x) := y)  ∫_0 ^( ∞) ((2y dy)/(1+e^( y) )) =2 ∫_0 ^( ∞) ((ydy)/(1+e^( y) ))              := 2 η (2) Γ (2)=2.(π^( 2) /(12)) = (π^( 2) /6)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\::\overset{\sqrt{{x}}\::=\:{y}} {=}\:\int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{2}{y}\:{dy}}{\mathrm{1}+{e}^{\:{y}} }\:=\mathrm{2}\:\int_{\mathrm{0}} ^{\:\infty} \frac{{ydy}}{\mathrm{1}+{e}^{\:{y}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\::=\:\mathrm{2}\:\eta\:\left(\mathrm{2}\right)\:\Gamma\:\left(\mathrm{2}\right)=\mathrm{2}.\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\:=\:\frac{\pi^{\:\mathrm{2}} }{\mathrm{6}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Commented by tabata last updated on 20/Jul/21

sir whats the mean (η)

$${sir}\:{whats}\:{the}\:{mean}\:\left(\eta\right) \\ $$

Commented by mnjuly1970 last updated on 20/Jul/21

  η (s )=Σ_(n=1) ^∞ (((−1)^( n−1) )/n^( s) )    eta function     η (s )= (1−2^( 1−s) ) ζ (s)       η (2) = (1−2^(1−2) ) ζ (2)=(1/2) ζ(2)=(π^( 2) /(12))      ζ (s)=Σ_(n=1) ^∞ (1/n^s )    zeta function...

$$\:\:\eta\:\left({s}\:\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}−\mathrm{1}} }{{n}^{\:{s}} }\:\:\:\:{eta}\:{function} \\ $$$$\:\:\:\eta\:\left({s}\:\right)=\:\left(\mathrm{1}−\mathrm{2}^{\:\mathrm{1}−{s}} \right)\:\zeta\:\left({s}\right) \\ $$$$\:\:\:\:\:\eta\:\left(\mathrm{2}\right)\:=\:\left(\mathrm{1}−\mathrm{2}^{\mathrm{1}−\mathrm{2}} \right)\:\zeta\:\left(\mathrm{2}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\zeta\left(\mathrm{2}\right)=\frac{\pi^{\:\mathrm{2}} }{\mathrm{12}}\: \\ $$$$\:\:\:\zeta\:\left({s}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{{s}} }\:\:\:\:{zeta}\:{function}... \\ $$

Commented by Olaf_Thorendsen last updated on 20/Jul/21

the Dirichlet eta function

$$\mathrm{the}\:\mathrm{Dirichlet}\:\mathrm{eta}\:\mathrm{function} \\ $$

Answered by Olaf_Thorendsen last updated on 20/Jul/21

I = ∫_0 ^∞ (dx/(1+e^(√x) ))  I(x) = ∫(dx/(1+e^(√x) ))    I(x) = ∫(1−(e^(√x) /(1+e^(√x) ))) dx  I(x) = ∫(1−2(√x)(((1/(2(√x)))e^(√x) )/(1+e^(√x) ))) dx  I(x) = x−2(√x)ln(1+e^(√x) )+∫((ln(1+e^(√x) ))/( (√x))) dx  I(x) = x−2(√x)ln(1+e^(√x) )−2Li_2 (−e^(√x) )  Li_2 (−1) = η(2) = (1−2^(1−2) )ζ(2) = (1/2)ζ(2)  Li(−z) = (1/2)Li_2 (z^2 )−Li_2 (z)  ⇒ Li(−e^(√x) ) = (1/2)Li_2 (e^(2(√x)) )−Li_2 ((√x))  Li_s (e^μ ) ∼_∞  −(μ^2 /(Γ(s+1)))  ⇒ Li_2 (−e^(√x) ) ∼_∞  −(1/2).((4x)/2)+(x/2) = −(x/2)  I(x) ∼_∞  x−2(√x)×(√(x−))2(−(x/2)) → 0  I(x) ∼_0  −2Li_2 (−1) = −2×(1/2)ζ(2) = −ζ(2)  I = ∫_0 ^∞ (dx/(1+e^(√x) )) = I_∞ −I(0) = 0−(−ζ(2))  I = ζ(2) = (π^2 /6)

$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{e}^{\sqrt{{x}}} } \\ $$$$\mathrm{I}\left({x}\right)\:=\:\int\frac{{dx}}{\mathrm{1}+{e}^{\sqrt{{x}}} } \\ $$$$ \\ $$$$\mathrm{I}\left({x}\right)\:=\:\int\left(\mathrm{1}−\frac{{e}^{\sqrt{{x}}} }{\mathrm{1}+{e}^{\sqrt{{x}}} }\right)\:{dx} \\ $$$$\mathrm{I}\left({x}\right)\:=\:\int\left(\mathrm{1}−\mathrm{2}\sqrt{{x}}\frac{\frac{\mathrm{1}}{\mathrm{2}\sqrt{{x}}}{e}^{\sqrt{{x}}} }{\mathrm{1}+{e}^{\sqrt{{x}}} }\right)\:{dx} \\ $$$$\mathrm{I}\left({x}\right)\:=\:{x}−\mathrm{2}\sqrt{{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\sqrt{{x}}} \right)+\int\frac{\mathrm{ln}\left(\mathrm{1}+{e}^{\sqrt{{x}}} \right)}{\:\sqrt{{x}}}\:{dx} \\ $$$$\mathrm{I}\left({x}\right)\:=\:{x}−\mathrm{2}\sqrt{{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{e}^{\sqrt{{x}}} \right)−\mathrm{2Li}_{\mathrm{2}} \left(−{e}^{\sqrt{{x}}} \right) \\ $$$$\mathrm{Li}_{\mathrm{2}} \left(−\mathrm{1}\right)\:=\:\eta\left(\mathrm{2}\right)\:=\:\left(\mathrm{1}−\mathrm{2}^{\mathrm{1}−\mathrm{2}} \right)\zeta\left(\mathrm{2}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{2}\right) \\ $$$$\mathrm{Li}\left(−{z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Li}_{\mathrm{2}} \left({z}^{\mathrm{2}} \right)−\mathrm{Li}_{\mathrm{2}} \left({z}\right) \\ $$$$\Rightarrow\:\mathrm{Li}\left(−{e}^{\sqrt{{x}}} \right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{Li}_{\mathrm{2}} \left({e}^{\mathrm{2}\sqrt{{x}}} \right)−\mathrm{Li}_{\mathrm{2}} \left(\sqrt{{x}}\right) \\ $$$$\mathrm{Li}_{{s}} \left({e}^{\mu} \right)\:\underset{\infty} {\sim}\:−\frac{\mu^{\mathrm{2}} }{\Gamma\left({s}+\mathrm{1}\right)} \\ $$$$\Rightarrow\:\mathrm{Li}_{\mathrm{2}} \left(−{e}^{\sqrt{{x}}} \right)\:\underset{\infty} {\sim}\:−\frac{\mathrm{1}}{\mathrm{2}}.\frac{\mathrm{4}{x}}{\mathrm{2}}+\frac{{x}}{\mathrm{2}}\:=\:−\frac{{x}}{\mathrm{2}} \\ $$$$\mathrm{I}\left({x}\right)\:\underset{\infty} {\sim}\:{x}−\mathrm{2}\sqrt{{x}}×\sqrt{{x}−}\mathrm{2}\left(−\frac{{x}}{\mathrm{2}}\right)\:\rightarrow\:\mathrm{0} \\ $$$$\mathrm{I}\left({x}\right)\:\underset{\mathrm{0}} {\sim}\:−\mathrm{2Li}_{\mathrm{2}} \left(−\mathrm{1}\right)\:=\:−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}\zeta\left(\mathrm{2}\right)\:=\:−\zeta\left(\mathrm{2}\right) \\ $$$$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+{e}^{\sqrt{{x}}} }\:=\:\mathrm{I}_{\infty} −\mathrm{I}\left(\mathrm{0}\right)\:=\:\mathrm{0}−\left(−\zeta\left(\mathrm{2}\right)\right) \\ $$$$\mathrm{I}\:=\:\zeta\left(\mathrm{2}\right)\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$

Commented by Tawa11 last updated on 03/Aug/21

Great

$$\mathrm{Great} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com