Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 147474 by mnjuly1970 last updated on 21/Jul/21

Answered by mindispower last updated on 21/Jul/21

(1/(2a))(Σ_(n≥−∞) ^∞ (((−1)^n )/(4n−a))−(((−1)^n )/(4n+a)))=Σ_(n≥−∞) (((−1)^n )/(16n^2 −a^2 ))=f(a)  =(1/(2a))Σ_(n≥−∞) (1/(8n−a))−(1/(8n−a+4))−(1/(8n+a))+(1/(8n+a+4))  recall Σ_(n≥−∞) (1/(x+n))=πcot(πx)  f(a)=(π/(16a))(cot(−((πa)/8))−cot(((4−a)/8)π)−cot(((πa)/8))+cot(((4+a)/8)π))  =−(π/(8a))(cot(((πa)/8))+tan(((πa)/8)))  cot(a)+tan(a)=(2/(sin(2a)))  =−(π/(4asin(((πa)/4))))  (1)=f(1)=(π/(4sin((π/4))))=−(π/4)(√2)  (2) f(1)=2S−1⇒s=(1/2)−(π/(4(√2)))  (3)f′(a)=Σ_(n≥−∞) ((2a(−1)^n )/((16n^2 −a^2 )^2 ))  S=((f′(1))/2)  f′(a)=(π/4)(((sin(((πa)/4))+(π/4)acos((π/4)a))/((asin((π/4)a))^2 )))  f′(1)=(π/4)((√2)+(π/4)(√2))=(π^2 /(16))(√2)+((π(√2))/4)  S=(π^2 /(32))(√2)+((π(√2))/8)  (4),S=2S′+1  S′=(π^2 /(64))(√2)+((π(√2))/(16))−(1/2)

12a(n(1)n4na(1)n4n+a)=n(1)n16n2a2=f(a)=12an18na18na+418n+a+18n+a+4recalln1x+n=πcot(πx)f(a)=π16a(cot(πa8)cot(4a8π)cot(πa8)+cot(4+a8π))=π8a(cot(πa8)+tan(πa8))cot(a)+tan(a)=2sin(2a)=π4asin(πa4)(1)=f(1)=π4sin(π4)=π42(2)f(1)=2S1s=12π42(3)f(a)=n2a(1)n(16n2a2)2S=f(1)2f(a)=π4(sin(πa4)+π4acos(π4a)(asin(π4a))2)f(1)=π4(2+π42)=π2162+π24S=π2322+π28(4),S=2S+1S=π2642+π21612

Terms of Service

Privacy Policy

Contact: info@tinkutara.com